• 제목/요약/키워드: Discharge Load

검색결과 523건 처리시간 0.019초

수질오염총량관리 관거월류부하 변화에 따른 배출부하량 산정방법 (Estimation of Discharge Load due to Combined Sewer Overflows in the Management of Total Maximum Daily Loads)

  • 박준대;오승영;최옥연
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.293-299
    • /
    • 2011
  • The quantity of a discharge load can change with changes in rainfall in the area with a combined sewer system (CSS). To evaluate the implementation appropriately in the management of total maximum daily loads (TMDLs), the effects of rainfall changes should be considered in the estimation of the discharge load. The rainfall condition for the estimation of the discharge load in a certain year should be standardized to the same rainfall condition as that of the reference year. However, the calculation process is very complicated with its potential limitations. This study investigated and developed relatively simple methods for estimating the discharge load. Load conversion method (LCM) is designed to convert the discharge load under the current rainfall condition into that of the reference rainfall conditions. Simple rainfall data method (SRDM) is to simplify the estimation process of the discharge load by the simple conversion of rainfall data. These methods were applied to calculate the discharge load and examine the estimation results. From the results of this study the application of these methods may be useful for estimating the discharge load in the TMDL process.

유사량 산정에 관한 연구 (밀양강을 중심으로) (A Study on Sediment Load in the Milyang River)

  • 안세영;민벙형
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.96-107
    • /
    • 1980
  • This study is carried out to estimate the rate of sediment transportation both to measure the amount of suspended and bedload sediment that moves on or near the river bed and passes through the cross section of a river in unit time, with suspended and bed load samplers used for the Milyang river and to determine the most satisfactory and convenient formula of some formulas for sediment discharge by comparing the measured rate with the calculated rate. The results of this study are summarized as follows; 1) The interrelationship (1) between the total discharge and the total sediment discharge (2) between discharge and suspended sediment load and (3) between discharge and bed load in the Milyang river are (1) i) 4$\leq$Q$\leq$100 C.M.S. Qr=0. 00272 Q0.70 (kg/sec) ii) 150$\leq$Q$\leq$800 C.M.S. Qr=0. 4807 Q0.46 (kg/sec) (2) Qs~=0. 07576 Q1.02 (kg/sec) (3) QB=0. 00957 Q0.44 (kg/sec) 2) The rate of suspended sediment load to total sediment discharge is found to be about; 99%. The suspended load is shown to be almost wash load which consists of silt and clay. 3) The relation between the total discharge and the suspended sediment load that are measured at three medium and small rivers in Korea is Qs=0. 13831 Q0.97 (kg/sec) 4) Brown's formula is determined to be the most convenient formula for application and comparison with observed data obtained for the Milyang river.

  • PDF

소규모 폐수배출시설 관리 강화의 필요성 (Necessity of Strengthening Small-Scale Wastewater Discharge Facilities Management)

  • 박재홍;류덕희
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.226-233
    • /
    • 2018
  • Small-scale wastewater discharge facilities account for 98% of all workplaces, but in the generation and emission of major pollutants, they account for 27.5 % and 23.5 %, respectively. Since the proportion of the emission load of the small-scale workplace is not large, the national environmental policy has been established mainly around large-scale wastewater discharge facilities. However, in the case of specific hazardous substances in water, the amount of the discharge load of the small-scale wastewater discharge facility was 2.4 times higher than that of the generation load. Certain types of specific hazardous substances in water, which have a higher discharge load than large-scale wastewater discharge facilities, account for 24 ~ 32 %. There are also cases in which the discharge load from a small-scale discharge facility is more than four times higher, depending on the specific kind of water pollutant. As a result of inspections, the violation rate of the small-scale wastewater discharge facility among the total violations by facilities is 93.9 ~ 97.5 %. As a result, the ecotoxicity value of small-scale wastewater discharge facilities was high in most industries, and there was a fluctuation in the measured value. This indicates that the ecological integrity of the water system can be largely influenced by small-scale wastewater discharge facilities. Therefore, it is necessary to expand the environmental management of small-scale wastewater discharge facilities, and in some cases, the effect of the improvement in quality may be more significant than in the management of large-scale wastewater discharge facilities.

낙동강 소유역 경지에서의 비점오염원 물질 발생 및 배출 특성 (Generation and Discharge Characteristics of Non-point Pollutants from Farmlands of Small Watershed for Nak-dong River)

  • 정용준;남광현;민경석
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.333-338
    • /
    • 2004
  • This study was carried out to investigate the generation and discharge characteristics of non-point pollutants from farmlands in Nak-dong river basin. Annual unit generation load of nitrogen and phosphorus by fertilization in the test paddy field was almost similar to those calculated by the fertilization standards of district agricultural technology center, but it was extremely higher in case of the test dry field. By comparing annual total generation load of nutrients from fertilization to the data of fertilizer marketing, the accurate forecasting of generation load of pollutants was achieved by marketing data. The annual total discharge ratio of nutrients through infiltration and overflow from the farmland of the test paddy field were 9.5% and 1.1%, respectively, and those in the test dry field were 22.0% and 0.1%, respectively. The monthly discharge load of nutrients were shown the highest proportioned to the discharge load from lands, but it showed higher in phosphorus, which was caused by the intermittent discharge of phosphorus accumulated in drainage.

수질오염총량관리 단위유역별 오염물질 배출부하량 특성분석 - 금강수계를 대상으로 (Characterization on the Pollution Discharge Load at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin)

  • 박준대;최옥연;오승영
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.786-795
    • /
    • 2012
  • Water quality management should be focused on the pollution concentrated area so that the improvement of water quality can be achieved effectively for the management of Total Maximum Daily Loads (TMDLs). It is necessary to consider discharge characteristics in the TMDL plan. This study analysed discharge characteristics such as pollution generation and discharge load density, and reduction potential by each unit watershed, and categorized the unit watershed into four groups according to its discharge load characteristics. This analysis can be used as helpful information for the prioritization of pollution reduction area and selection of pollution reduction measures in the development of TMDL plans.

수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비 (Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow)

  • 박준대;박주현;류덕희;정동일
    • 한국물환경학회지
    • /
    • 제24권4호
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).

금강지류 유역에서의 유출량과 오염부하량의 상관관계 분석 (An Analysis on the Relationship between Discharge and Pollution Load on the Tributary Basin of Kum River)

  • 정상만;임경호;최정현
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.527-536
    • /
    • 2000
  • 본 연구는 금강의 주요지류인 미호천 유역에 소재하고 있고 주요 텔레미터 수위표가 위치한 4개의 지점을 선정하여 유출량과 오염부하량의 상관성 분석을 통해 각 소유역의 전체 오염부하량을 추정하였다. 본 연구에서는 대상유역의 유량측정 지점을 중심으로 평·갈수시 및 홍수시의 유출량 및 수질을 분석하였다. 분석된 유출량 및 수질자료를 통해 유역의 수위-유량관계곡선과 농도변화를 분석하였다. 그리고, 유출량과 수질항목간의 상관관계를 분석하였고, 단위면적당 유출량 변화에 따른 단위면적당 오염부하량과의 상관관계 분석을 통해 유역별 상관식을 도출하였다. 이 관계식은 미호천 유역에서의 유출량 변화에 따른 오염부하량의 산정에 이용될 수 있을 것이다.

  • PDF

비점오염원 관리지역의 선정 기법에 관한 연구 (A Study for the Selection Method of Control Area of Nonpoint Pollution Source)

  • 박상현;정우혁;이상진;임봉수
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.

Efficient Simulation Method for Dielectric Barrier Discharge Load

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.188-196
    • /
    • 2004
  • The dielectric barrier discharge is recognized as one of the efficient methods of ultraviolet light generation and ozone production. As well, it is widely utilized for gaseous wastes neutralization and other technological processes in industry. This electrochemical reaction is electrically equivalent to a nonlinear capacitive load that represents some difficulties for designing the power supply. Therefore, a conventional power supply is designed for a drastically simplified model of the load and generally is not optimal. This paper presents a fast simulation approach for the nonlinear capacitive model representation of the dielectric barrier discharge load lamp. The main idea of the proposed method is to use analytical solutions of the differential state equations for the load and find the unknown initial conditions for the steady state by an optimization method. The derived expressions for the analytical solutions are rather complicated, however they greatly reduce the calculation time, which make sense when a deeper analysis is performed. This paper introduces the proposed simulation method and gives some examples of its application such as estimation of the load equivalent parameters and load matching conditions.

수심적분법에 의한 유사량 추정연구 (A Study on Estimation by Depth Integrating Method of Sediment Discharge)

  • 서승덕;김활곤;우효섭
    • 한국농공학회지
    • /
    • 제38권1호
    • /
    • pp.90-97
    • /
    • 1996
  • In Korea, total sediment discharge of a river has been estimated simply by using certain sediment transport formulas including, among others, Einstein's formula. Those formular, however, are known not to be reliable enough for the result calculated by them to be used directly to river planning and management. Therefore, the study used the Modified Einstein Procedure to the estimation of total sediment discharge, because this method is reliable estimated by measurement. Here, measurement of sediment discharge used depth integrating method. The major results obtained from the study for estimation by depth integrating method of sediment discharge in Naeseong stream are as follow; 1 The sedeiment characteristics of Naeseong stream are; The distribution of sediment grain size shows that silt and clay are 55% and sand is 45%. and the bed load sediment grain size is constituted that sand contained with the grain size from O.062mm to 2.0mm is 80% 2. The sediment rating formulas derived from the regression analysis between the sediment discharge and flow discharge are; Seogpo-Gyo : Qs=$0.017 \times 10^{-4} Q^{2.352}$, where discharge is l0cms $0.074 \times 10^{-4} Q^{2.066}$, where discharge is l0cms

  • PDF