• Title/Summary/Keyword: Discharge Electrode

검색결과 1,366건 처리시간 0.029초

3전극이 부설된 틈새 장벽방전형 플라즈마장치의 코로나 방전 및 오존발생 특성 (Corona Discharge and Ozone Generation Characteristics of a Slit Dielectric Barrier Discharge Type Plasma Reactor with a Third Electrode)

  • 문재덕;정재승
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.583-587
    • /
    • 2007
  • Corona discharge and ozone generation characteristics of a slit dielectric barrier discharge type wire-plate plasma reactor with a third electrode have been investigated. When a third electrode is installed on a slit of the slit barrier, where an intense corona discharge occurs, it is found that a significantly increased ozone output could be obtained. This, however, indicates that the third electrode can activate the corona discharges both of the discharge wire and the slit of the slit barrier in the plasma reactor. As a result, a thin stainless wire, used as the third electrode has a strong effect to influence the corona discharge of the slit and corona wire, especially to the negative corona discharge. Higher amounts of the output ozone and ozone yield, about 1.27 and 1.29 times for the negative corona discharge, can be obtained with the third electrode, which reveals the effectiveness of the third electrode.

진공 방전관을 이용한 고농도 중첩방전형 오존발생기의 특성 (The Characteristics of a Superposed Discharge Type Ozonizer Using Vacuum Discharge Tube)

  • 송현직;이창호
    • 조명전기설비학회논문지
    • /
    • 제19권5호
    • /
    • pp.60-67
    • /
    • 2005
  • 본 논문에서는 진공방전관을 이용한 고농도 중첩방전형 오존발생기를 설계$\cdot$제작하였다. 3개의 전극(중심전극, 내부전극 및 외부전극)과 1개의 방전간극(내부전극과 외부전극 사이의 방전간극)으로 구성된 중첩방전형 오존발생기는 진공방전관내에 장착한 중심전극과 내부전극에 $180{[^\circ]}$의 위상차를 가진 2개의 교류고전압을 인가하고 외부전극을 공통접지함으로써 중심전극과 외부전극사이에서 발생되는 무성방전과 내부전극과 외부전극사이에서 발생되는 무성방전이 방전간극에서 중첩되는 구조이다. 이때 방전관의 진공도, 방전전력 및 산소원료가스 유량 변화에 따른 방전특성과 오존생성특성을 연구검토한 결과 최대 8840[ppm]의 고농도 오존을 얻을 수 있었다.

펄스 코로나 반응기에서 방전극의 배열에 따른 탈질율 연구 (A Study on the NOx Removal Rate by Arrangement of Discharge Electrode in Pulsed Corona Discharge Reactor)

  • 최민;박소진;위영호
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.315-323
    • /
    • 2003
  • The goal of this study if the optimization of discharge electrode for pulsed corona discharge reactor located in thermal power plant. For this purpose, we have performed experiments of NO$_{x}$ removal rate by exchange of discharge electrode diameter and arrangement of discharge electrode in the non -thermal plasma reaction facility using a ethylene as additive. If the diameter and numbers of discharge electrode were larger, the NO$_{x}$ removal rate was higher. From these results, if we optimized the shape and installed numbers of discharge electrode at the pilot plant, we could increase the NO$_{x}$ removal rate with less amount of additive than current amount.mount.

역극성 전압인가와 나사형 전극을 이용한 복합방전형 오존발생기의 특성 (The Characteristics of the Complex Discharge Type Ozonizer using Applied Voltage of a Inverse-Polarity and a Screw Type Electrode)

  • 송현직
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.80-85
    • /
    • 2011
  • In this paper, complex discharge type ozonizer with a screw type electrode has been designed and manufactured for environmental improvement using low power and high efficency ozoniazer. The complex discharge type ozonizer is equipped with three electrodes{central electrode(CE), internal electrode(IE) and external electrode(EE)}. Ozone of the complex discharge type ozonizer is generated by superposition of silent discharge and surface discharge in discharge space as a screw type CE and IE are respectively applied to AC high voltage of inverse-polarity has $180[^{\circ}]$ phase difference, EE is common electrode. In this time, when oxygen has been used as supplied gas, the maximum values of ozone concentration, ozone generation and ozone yield were obtained as 8,334[ppm], 3,249[mg/h] and 65.3[g/kwh].

다중방전형 오존발생기의 試作 및 特性(I) (Trial Manufacture and Characteristics of a Multi-discharge Type ozonizer(I))

  • 송현직;이광식;박원주;이동헌;김금영;김이국
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권7호
    • /
    • pp.533-541
    • /
    • 1999
  • Multi-discharge type ozonizer(MDO) using superposed silent discharge has been designed and manufactured. It consists of three electrodes( central electrode, internal electrode, and external electrode ) and double gaps( gap between central electrode and internal electrode, gap between internal electrode and external electrode ). Therefore, ozone is generated by superposing silent discharges generated between the gaps respectively. And the MDO consists of three types of superposed discharge ozonizers according to voltage appling method for each electrode ; A.C. high voltages are applied two of three electrodes with phase difference of 180[˚], the other electrode is a ground. This paper describes that discharge and ozone generation characteristics of MDO which comprising central electrode and internal electrode applied A.C. high voltages with phase difference of 180[˚] respectively, and the grounded external electrode. As a result, the maximum ozone concentration, generation, and yield can be obtained 10208[ppm], 6.4[g/h], and 280[g/kwh] respectively.

  • PDF

MIM 공법 적용 커넥터 금형 가공용 방전 전극 개발 (Development of Discharge Electrode for Machining Connector Mold applying MIM Process)

  • 신광호;전용준;허영무
    • Design & Manufacturing
    • /
    • 제8권2호
    • /
    • pp.37-40
    • /
    • 2014
  • A discharge electrode plays a role of shaving off workpiece with spark generated by current in discharge machining. Accordingly, for the discharge electrode, an electrode with excellent wear resistance is necessary. Generally, Graphite and Cu are used as the materials of the electrode, and recently Cu-W is mainly used as an electrode with excellent wear resistance. However, the form of the electrode generally used is produced mostly using cutting work, so a lot of costs incur if several similar forms are needed. Thus, this study developed a Cu-W electrode using Metal Injection Molding (MIM) process to produce similar forms with excellent productivity and a great quantity of electrodes in a similar form in discharge machining and carried out a discharge machining test. In developing an electrode applying MIM, predicting contraction of a product in a sintering process, a mold expansion ratio of 1.29486 was given, but the actual product showed a percentage of contraction 24% to 32%, which showed a difference of 3% to 5%. In addition, to verify wear resistance of the discharge electrode, abrasion loss was measured after the discharge.

  • PDF

형조 방전가공에서 극간 전압과 가공 안정성에 관한 연구 (A Study on the Gap Voltage and Machining Stability in Diesinking Electrical Discharge Machining)

  • 김광열;이상민;이건기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.429-436
    • /
    • 2003
  • The electrical discharge machining(EDM) with Si electrode instead of Gr or Cu electrode. made enormous effects on the surface. machining time, anti-caustic workpiece surface and so on In this paper. we experimented on the inter-role distance during discharge the electrical phenomenon of inter-pole, the distribution of discharge point. the distribution of off load time. etc., using Si electrode Cu electrode and Gr electrode under the same machining condition. As a result of a large quantity generated exclusive powders. the performance of the EDM using Si electrode. compared with EDM using others. is improved. We show that the quantities of those make far pole-gap discharge and discharge scatter under stable machining status possible.

수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구 (A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제20권5호
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

주파수-진공도를 이용한 3전극-1방전간극 무성방전형 오존발생기의 오존생성 상승 효과 특성 (The Characteristics of Ozone Generation Synergy Effect for 3 Electrode-1 Discharge Gap Silent Discharge Type Ozonizer using Frequency-Vacuum)

  • 송현직
    • 조명전기설비학회논문지
    • /
    • 제19권8호
    • /
    • pp.94-101
    • /
    • 2005
  • 본 논문에서는 3개의 전극(중심전극, 내부전극 및 외부전극)과 1개의 방전간극(내부전극과 외부전극 사이의 방전간극)으로 구성된 무성방전형 오존발생기를 설계 제작하였다. 진공방전관내에 장착한 중심전극과 내부전극에 2개의 교류 고주파 고전압을 각각 인가하고 외부전극을 공통접지함으로써 방전간극에서 무성방전에 의하여 오존이 생성되는 구조이다. 이때 방전관의 진공도, 전원장치의 주파수, 방전전력 및 산소원료가스 유량 변화에 따른 방전특성과 오존생성특성을 연구 검토하였다. 그 결과 방전관의 진공도와 전원장치의 주파수가 높을수록 오존생성특성이 상승하였으며 최대 7,700[ppm], 460[mg/h] 및 70[g/kwh]의 오존을 얻을 수 있었다.

수침대 그물전극형 방전장치의 이온풍 발생특성 (Ionic Wind Generation Characteristics of a Water-Pen Point-to-Mesh Type Discharge System)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.783-787
    • /
    • 2009
  • A point-to-mesh type discharge system, utilizing a water-pen point as a corona discharge electrode and a mesh as an ion induction electrode, has been proposed, and the effect of the water-pen point electrode of the discharge system to the ionic wind velocity and generation yield was investigated. It was observed that the proposed discharge system with the water-pen point electrode can generate a higher ionic wind velocity as compared with that of the metal point electrode. As a result, the peak ionic wind velocities of 2.61 and 4.05 m/s for the positive and negative corona discharges of the proposed discharge system can be obtained, which are 1.39 and 1.15 times higher than those of the metal point electrode with same design. The ionic wind generation yield of 4.72 m/s/W of the discharge system with the water-pen point electrode was obtained for the positive corona, which was 3.66 times higher than that of the metal point electrode. This enhancement may be due to the effect of the water-pen point electrode.