• Title/Summary/Keyword: Discarded Timber

Search Result 3, Processing Time 0.015 seconds

A Study on the Optimal Condition of Producing Charcoals to Develop Activated Carbons from a Discarded Timber (폐벌목(廢伐木)에서 활성탄(活性炭) 개발(開發)을 위한 목탄(木炭) 제조(製造)의 최적화(最適化) 방안(方案)에 관(關)한 연구(硏究))

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hoon
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.66-75
    • /
    • 2008
  • Using a pinus koraiensis and pinus rigida which are normally being discarded in South Korea, the optimal condition of producing charcoals has been studied to develop activated carbons which can be recycled as a higher value-added product. A study on manufacture of activated carbons from a discarded timber consists of two processes, the production process of charcoals from a discarded timber by low temperature pyrolysis process and the production process of activated carbons from the charcoals by chemical activation reaction. This study deals with the production process of charcoals from a discarded timber by low temperature pyrolysis process. As a results of experiment, it was investigated that charcoals produced through drying at $150^{\circ}C$ for 6hr and pyrolysis process at $500^{\circ}C$ for 1hr had the highest values in physical properties such as iodine number and BET surface area. Furthermore, through observing SEM images, the maximum development of porosity had been founded in this condition. It was confirmed that values of physical properties on using a pinus koraiensis are superior to the ones when using a pinus rigida. When charcoals were produced from a pinus koraiensis in this condition, BET surface area was approx. $640m^2/g$.

A Study on the Adsorption Characteristics of Benzene Using Activated Carbon from Waste Timber (폐벌목 활성탄의 벤젠 흡착특성)

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.430-436
    • /
    • 2013
  • In this study, experiments on the static adsorption of benzene were carried out using activated carbon made from Pinus koraiensis which is normally discarded waste timber in South Korea. The experiment were performed at 303.15 K, 318.15 K and 333.15 K under the pressure up to 7.999 kPa. Isothermal adsorption curves were obtained using Langmuir isotherm, Freundlich isotherm and Toth isotherm for comparison. Based on the fitting, the adsorption quantity of Benzene (q), the isothermal adsorption curves obtained from Langmuir isotherm and Toth isotherm showed the higher accuracy. Although there was little difference in accuracy between result from Langmuir isotherm and that from Toth isotherm, the adsorption quantity of Benzene (q) was expressed in terms of Langmuir isotherm because less parameters were required for Langmuir isotherm than for Toth isotherm. Moreover SEM images of the activated carbon from Pinus koraiensis and the commercial activated carbon were taken to observe the pore size development. The results showed that the perforation development of activated carbon from Pinus koraiensis (waste timber) was better than that of commercial activated carbon (DARCO A.C., SPG-100 A.C.). Adsorption quantity of benzene on activated carbon from Pinus koraiensis was confirmed to be higher than that on commercial activated carbon. Therefore, we may conclude that it is feasible to commercialize the process to manufacturing activated carbon from waste timber.

A Study on Development of Activated Carbons from Waste Timbers (폐벌목(廢伐木)을 이용(利用)한 활성탄(活性炭) 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hoon
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.68-78
    • /
    • 2008
  • Using a Pinus koraiensis and Pinus rigida which are normally being discarded in South Korea, optimal conditions of producing activated carbons have been studied to recycle as a higher value-added product. This study consists of two processes, the production process of charcoals from waste timbers by low temperature pyrolysis and the production process of activated carbons from the charcoals by chemical activation reaction. This paper deals with the production process of activated carbons from the charcoals by chemical activation reaction. As an alkali has been generally used as an activating agent, KOH and NaOH which react well with a carbon were used in this study. As a result of the experiments, it is confirmed that activated carbons made with KOH treatment had superior values in physicochemical properties to NaOH, showing that there was no remain of KOH at the surface of the charcoals while there was $3{\sim}4%$ of NaOH remaining after the experiments. Thus, it is concluded that KOH reacted more actively with a charcoal than NaOH. Moreover, it was also found that values in physicochemical properties when using a Pinus koraiensis are superior to the ones when using a Pinus rigida. The optimal mixing ratio of an activating agent to a charcoal was 400 wt.%. To improve the physicochemical properties, activated carbons were washed out by distilled water after neutralization with SM hydrochloric acid solution. When activated carbons were produced from a Pinus koraiensis in this optimal conditions, value of BET surface area was found to be approx. $2400\;m^2/g$.