• Title/Summary/Keyword: Disaster-Monitoring

Search Result 676, Processing Time 0.026 seconds

Mountain Meteorology Data for Forest Disaster Prevention and Forest Management (산림재해 방지와 산림관리를 위한 산악기상정보)

  • Keunchang, Jang;Sunghyun, Min;Inhye, Kim;Junghwa, Chun;Myoungsoo, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.346-352
    • /
    • 2022
  • Mountain meteorology in South Korea that is covered mountains with complex terrain is important for understanding and managing the forest disaster and forest ecosystems. In particular, recent changes in dryness and/or rainfall intensity due to climate change may cause an increase in the possibility of forest disasters. Therefore, accurate monitoring of mountain meteorology is needed for efficient forest management. Korea Forest Service (KFS) is establishing the Automatic Mountain Meteorology Observation Stations (AMOS) in the mountain regions since 2012. 464 AMOSs are observing various meteorological variables such as air temperature, relative humidity, wind speed and direction, precipitation, soil temperature, and air pressure for every minute, which is conducted the quality control (QC) to retain data reliability. QC process includes the physical limit test, step test, internal consistency test, persistence test, climate range test, and median filter test. All of AMOS observations are open to use, which can be found from the Korean Mountain Meteorology Information System (KoMIS, http://mtweather.nifos.go.kr/) of the National Institute of Forest Science and the Public Data Portal (https://public.go.kr/). AMOS observations with guaranteed quality can be used in various forest fields including the public safety, forest recreation, forest leisure activities, etc., and can contribute to the advancement of forest science and technology. In this paper, a series of processes are introduced to collect and use the AMOS dataset in the mountain region in South Korea.

A Study on the Risk Assessment for Strengthening Management Safety of Hydrogen Fueling Station (수소충전소의 경영안전성 강화를 위한 위험성평가 추가 항목 연구)

  • Lee, Jang Won;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.520-531
    • /
    • 2022
  • Purpose: Based on the risk evaluation of hydrogen fueling stations, this study aims to find a plan to strengthen management safety by examining profitability and management risk, which are major concerns of employers. Method: The risk evaluation was divided into 'acceptable risk' and 'allowable risk' over time from the stage of installation of hydrogen fueling stations, and compared and analyzed with the results of existing studies. Result: Existing studies have been appropriately applied to the risk assessment performed at the stage of installing hydrogen fueling stations. However, possible risks could be found at the operational stage. In other words, it was derived that an evaluation of management risk was also necessary. And through this, it was confirmed that the safety of hydrogen fueling stations was strengthened. Conclusion: The risk assessment that precedes the stage of installing hydrogen fueling stations is appropriate because significant results have been derived from the 'acceptable risk' assessment. However, the operator needs to evaluate the risks that may occur at the operating stage, that is, the 'allowable risks' and prepare countermeasures. Therefore, it is proposed to add management risk assessment items to build and operate safer hydrogen fueling stations.

Analysis on Results and Changes in Recent Forecasting of Earthquake and Space Technologies in Korea and Japan (한국과 일본의 지진재해 및 우주이용 기술예측에 대한 최근의 변화 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.421-428
    • /
    • 2022
  • This study analyzes emerging earthquake and space use technologies from the latest Korean and Japanese scientific and technological foresights in 2022 and 2019, respectively. Unlike the earthquake prediction and early warning technologies presented in the 2017 study, the emerging earthquake technologies in 2022 in Korea was described as an earthquake/complex disaster information technology and public data platform. Many detailed future technologies were presented in Japan's 2019 survey, which includes largescale earthquake prediction, induced earthquake, national liquefaction risk, wide-scale stress measurement; and monitoring by Internet of Things (IoT) or artificial intelligence (AI) observation & analysis. The latest emerging space use technology in Korea and Japan were presented in more detail as robotic mining technology for water/ice, Helium-3, and rare earth metals, and manned station technology that utilizes local resources on the moon and Mars. The technological realization year forecasting in 2019 was delayed by 4-10 years from the prediction in 2015, which could be greater due to the Corona 19 epidemic, the declaration of carbon neutrality in Korea and Japan in 2020 and the Russo-Ukrainian War in 2022. However, it is required to more active research on earthquake and space technologies linked to information technology.

A Study on the Effectiveness of the Hazardous Chemical Transport Vehicle Management System (유해화학물질 운반차량 관리제도 실효성 연구)

  • Kim, Sungbum;Lee, HyunSeung;Jeong, Seongkyeong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.794-801
    • /
    • 2021
  • Purpose: The effectiveness of the transport vehicle management system of the Chemical Substances Control Act will be studies and used as basic data for future system improvement plans. Method: After the enforcement of the Chemical Substances Control Act, the effectiveness for the transport vehicle management system was studies by comparing the transport plan, guidance and inspection status, safety training completion management, ect., and the reduction rate of chemical accidents. Results: The average number of chemical accidents in transport vehicles nationwide is 20 each year. And It is decreasing with the stabilization of the Chemical Substances Control Act('15.1.1). The first reason for the decrease in chemical accidents is the increase in submission of transport plans. Second, as the guidance and inspection rate increased every year, the shipper company's management of transport companies was naturally strengthened. Finally, it is judged that chemical accident caused by transport vehicles decrease through safety education. Conclusion: The current tranport vehicle management system of the Chemical Substances Control Act is effective. However, further research is needed to improve the practical and efficient transport vehicle management system.

A Study on Falling Detection of Workers in the Underground Utility Tunnel using Dual Deep Learning Techniques (이중 딥러닝 기법을 활용한 지하공동구 작업자의 쓰러짐 검출 연구)

  • Jeongsoo Kim;Sangmi Park;Changhee Hong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.498-509
    • /
    • 2023
  • Purpose: This paper proposes a method detecting the falling of a maintenance worker in the underground utility tunnel, by applying deep learning techniques using CCTV video, and evaluates the applicability of the proposed method to the worker monitoring of the utility tunnel. Method: Each rule was designed to detect the falling of a maintenance worker by using the inference results from pre-trained YOLOv5 and OpenPose models, respectively. The rules were then integrally applied to detect worker falls within the utility tunnel. Result: Although the worker presence and falling were detected by the proposed model, the inference results were dependent on both the distance between the worker and CCTV and the falling direction of the worker. Additionally, the falling detection system using YOLOv5 shows superior performance, due to its lower dependence on distance and fall direction, compared to the OpenPose-based. Consequently, results from the fall detection using the integrated dual deep learning model were dependent on the YOLOv5 detection performance. Conclusion: The proposed hybrid model shows detecting an abnormal worker in the utility tunnel but the improvement of the model was meaningless compared to the single model based YOLOv5 due to severe differences in detection performance between each deep learning model

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

A Study on Health Impact Assessment and Emissions Reduction System Using AERMOD (AERMOD를 활용한 건강위해성평가 및 배출저감제도에 관한 연구)

  • Seong-Su Park;Duk-Han Kim;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Purpose: This study aims to quantitatively determine the impact on nearby risidents by selecting the amount of chemicals emitted from the workplace among the substances subject to the chemical emission plan and predicting the concentration with the atmospheric diffusion program. Method: The selection of research materials considered half-life, toxicity, and the presence or absence of available monitoring station data. The areas discharged from the materials to be studied were selected as the areas to be studied, and four areas with floating populations were selected to evaluate health risks. Result: AERMOD was executed after conducting terrain and meteorological processing to obtain predicted concentrations. The health hazard assessment results indicated that only dichloromethane exceeded the threshold for children, while tetrachloroethylene and chloroform appeared at levels that cannot be ignored for both children and adults. Conclusion: Currently, in the domestic context, health hazard assessments are conducted based on the regulations outlined in the "Environmental Health Act" where if the hazard index exceeds a certain threshold, it is considered to pose a health risk. The anticipated expansion of the list of substances subject to the chemical discharge plan to 415 types by 2030 suggests the need for efficient management within workplaces. In instances where the hazard index surpasses the threshold in health hazard assessments, it is judged that effective chemical management can be achieved by prioritizing based on considerations of background concentration and predicted concentration through atmospheric dispersion modeling.

Proposed program for monitoring recent Crustal movement in Korean Peninsula

  • Hamdy, Ahmed M.;Jo, Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.283-292
    • /
    • 2002
  • The Korean peninsula is located at the edge of the East Asian active margin. The seismic activity in the Korean Peninsula is relatively low compared with the neighboring countries China and Japan. According to the available Seismic information, the Korean Peninsula is not totally safe from the Earthquake disaster. Moreover, the area is surrounded by varies tectonic forces which is resulted from the relative movements of the surrounding tectonic plates "Pacific, Philippine Sea, Eurasian and South China". Nowadays South Korea has 65 GPS stations belong to 5 governmental organizations "each organization figure out its own GPS stations for different requirements" In order to minimize the seismic hazard in the Korean Peninsula a program for monitoring the recent crustal movement has been designed considering the uses of the available GPS station "some selected stations from the previously mentioned stations" and the tectonic settings in and around the Korean Peninsula. This program is composed of two main parts, the first part to monitor the crustal deformation around the Korean Peninsula with the collaboration of the surrounding countries "China and Japan" this part is composed of two phases "East Sea Phase and Yellow Sea Phase". These phases will be helpful in determining the deformation parameters in the East Sea and the Yellow Sea respectively While the Second part of this program, is designed to determine the deformation parameters id and around the main faults in the Korean Peninsula and the relative movement between the Korean Peninsula and the Cheju Island. Through out this study the needs of crustal movement center rose up to collect the data from the previously mentioned stations and Organizations in order to use such reliable data in different geodynamical application.

  • PDF

The Analysis of Volcanic-ash-deposition Damage using Spatial-information-based Volcanic Ash Damage Sector and Volcanic Ash Diffusion Simulation of Mt. Aso Volcano Eruption Scenario (공간정보 기반의 국내 화산재 피해 분야와 아소산 화산재 모의 확산 시나리오를 활용한 화산재 누적 피해 분석)

  • Baek, Won-Kyung;Kim, Miri;Han, Hyeon-gyeong;Jung, Hyung-Sup;Hwang, Eui-Hong;Lee, Haseong;Sun, Jongsun;Chang, Eun-Chul;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1221-1233
    • /
    • 2019
  • Estimating damage in each sector that can be caused by volcanic ash deposition, is very important to prepare the volcanic ash disaster. In this study, we showed predicted-Korean-volcanic-ash damage of each sector by using volcanic ash diffusion simulation and spatial-data-based volcanic ash damage sector in previous study. To this end, volcanic ash related base maps were generated by collecting and processing spatial information data. Finally, we showed Korean-volcanic-ash-deposition damages by sector using the collected Mt. Aso volcanic ash scenarios via overlapping analysis. As a result, volcanic-ash-related damages were expected to occur in the 162 and 134 districts for each Aso volcanic ash scenarios, since those districts exceeds the minimum volcanic ash damage criterion of 0.01 mm. Finally, we compared possible volcanic ash damages by sectors using collected and processed spatial data, after selecting administrative districts(Scenario 190805- Kangwon-do, Kyungsangbuk-do; Scenario 190811-Chuncheon-si, Hongcheon-si) with the largest amount of volcanic ash deposition.

Design of CIC Interpolators with Improved Passband and Transition Region for Underwater Acousitc Communication (통과대역 및 전이영역 특성이 개선된 수중음파통신용 CIC 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.660-665
    • /
    • 2018
  • Research into underwater wireless networks that enable the monitoring and controlling of the ocean environments has been continuing for disaster prevention and military proposes, as well as for the exploitation of ocean resources throughout the world. A research group led by Hoseo university has been studying a distributed underwater monitoring and controlling network. In this study, we developed an interpolator for acoustic communication between an underwater base station controller and underwater base station, which is included in this network. The underwater acoustic communication provided by this network defines four links whose sampling rates are different. Low power consumption is one of the most important requirements. Therefore, we adopted CIC interpolators, which are known to act as filters with a low power consumption, and some CIC interpolators with an appropriate changing rate were selected depending on the link. However, these interpolators have a large passband drop and wide transition region. To solve these problems, we added a compensator and half-band filter. After verifying the algorithm by using Matlab, we designed and verified it with Verilog-HDL in a ModelSim environment.