• Title/Summary/Keyword: Disaster site support system

Search Result 33, Processing Time 0.017 seconds

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF