• Title/Summary/Keyword: Disaster resilience

Search Result 104, Processing Time 0.022 seconds

A Study on the Resilience-Based Performance Evaluation Method of Structures and Their Application Plan (구조물의 회복탄력성 기반 성능평가법에 대한 고찰 및 적용 방안에 관한 연구)

  • Kim, Yu-Seong;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.159-167
    • /
    • 2020
  • The resilience performance evaluation method of a structure can evaluate the ability to recover after an earthquake disaster, and this study deals with the consideration and introduction of the resilience performance evaluation method. The resilience evaluation method can be expressed as a quantified number by constructing a loss estimation model and a recovery evaluation model. The recovery evaluation model should consider downtime in addition to the repair time, and the loss estimation model should consider not only direct loss to structures and non-structures, but also indirect loss due to functional loss of the building. In addition, to build a loss estimation model, the structure should be simplified to perform an efficient analysis. Therefore, in this study, the equivalent terminal induction system proposed cantilever-type and rahmen-type SDOF, and it is evaluated somewhat conservatively compared to the example structure, and it is judged that there is a need to improve the hysteresis characteristics by applying the stiffness reduction factor of the SDOF model.

A Review on Urban Resilience Assessment Methods

  • Barjau, Jaime;Wong, Francis K.W.;Fang, Dongping
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.685-686
    • /
    • 2015
  • The world is currently undergoing an intense urbanization process. The percentage of urban dwellers has never been so high. In 2010, and for the first time, urban population surpassed the rural one, accounting for 51% of global population, and this trend will continue in the forthcoming years. This increment in concentration of population and supporting assets in cities, make their performance a critical issue for world population. Recent events such as Fukushima tsunami and the hurricane Katrina have shown how fragile built environments are and the unpredictability of occurrence and magnitude of the hazards. Such an expansion of the world's urban population, together with an increase in severity and number of hazards and catastrophes, has put under the spotlight the necessity to build cities not only sustainable, but resilient. Decision makers should acknowledge failure as an option, and the importance of developing city resilience. This paper will provide an initial review on urban resilience, definitions and assessment approaches as a first step for decision makers to account for resilience in their decision making process.

  • PDF

Implementation System and Strategic Implications for Disaster Risk Reduction by the United Nations (유엔의 재난위험 감소 추진체계 및 전략의 시사점)

  • Kim, MyungHee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.211-219
    • /
    • 2020
  • This paper examines in depth the UN's disaster risk reduction system and framework that affect a country's disaster safety strategy and focuse on identifying the global trends in disaster risk reduction that have emerged in the Hyogo and the Sendai Framework, a disaster risk reduction strategy proposed by the UN since 2000. For this aim it attempts a theoretical review based on collecting a variety of domestic and international literatures, draws meaningful implications and suggests alternatives to a national disaster risk reduction policy. According to the analysis, the UN disaster risk reduction mechanism is UNISDR, the Secretariat is UNDRR, and the SRSG represents it, and the Sendai Framework, developed from the Hyogo Code of Conduct, a global strategy which has been for disaster safety for the past decade, will lead global disaster safety for the next decade. The policy implications drawn from the analysis of both strategies are the emphasis on consistent international coordination, strengthening resilience and an integrated and comprehensive approach. In conclusion, this paper proposes the need for a disaster risk reduction strategy to establish a resilience reinforcement system to proactively identify and cope with risk factors and to minimize impacts, to promote the coordination of international coordination and cooperation at the government level.

The Impact of Organizational Safety Culture on the Resilience Ability : Focused on the Construction Industry (조직의 안전문화가 레질리언스 역량에 미치는 영향 : 건설업을 중심으로)

  • Chu, Chan Ho;An, Kang Min;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.73-85
    • /
    • 2021
  • The construction industry is considered to be a fatal accident industry, accounting for 28.5% of the total industrial accidents in 2017, as the number of industrial accidents in the construction industry has steadily increased over the past decade. So it is necessary to consider introducing Resilience Engineering, which is actively applied to risky industries around the world, to drastically reduce construction accidents. Although Resilience Engineering, which has emerged as the next-generation safety management centered on Hollnagel since the 2000s, claims the importance of strengthening Resilience abilities considering organizational structure and culture, most studies focus only on developing evaluation indicators. The purpose of this study is to analyze the impact of an organization's safety culture on its Resilience abilities in the construction industry. Specifically, it conducted empirical analysis on the impact of safety culture consisting of 'communication, leadership and safety systems' on the Resilience abilities(responding ability, monitoring ability, learning ability, anticipating ability), and the mediation relationship between leadership, communication, and safety system. The survey was conducted on construction workers, and an empirical analysis was conducted on the final 154 responses using SPSS 25 and Smart PLS 3. The results showed that the safety system had a significant impact on all Resilience Abilities, and communication had a significant impact on the remaining three except for anticipating ability among Resilience Abilities. On the other hand, leadership has been shown to have a significant impact on anticipating ability only. In the verifying of the mediation relationship between leadership, communication and safety systems, it was found that leadership affects all Resilience abilities by means of safety systems, but communication can only affect responding ability. This study has practical significance in that it suggests the need for policy-level efforts to introduce and apply Resilience Engineering and then expanded the effective safety management assessment of the construction industry in the future. Moreover, the academic implications are important in that the study attempted to expand the academic scope for a paradigm shift in the future as the safety culture has identified its impact on the Resilience abilities.

Development and Application of a Coastal Disaster Resilience Measurement Model for Climate Change Adaptation: Focusing on Coastal Erosion Cases (기후변화 적응을 위한 연안 재해 회복탄력성 측정 모형의 개발 및 적용: 연안침식 사례를 중심으로)

  • Seung Won Kang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.713-723
    • /
    • 2023
  • Climate change is significantly affecting coastal areas, and its impacts are expected to intensify. Recent studies on climate change adaptation and risk assessment in coastal regions increasingly integrate the concepts of recovery resilience and vulnerability. The aim of this study is to develop a measurement model for coastal hazard recovery resilience in the context of climate change adaptation. Before constructing the measurement model, a comprehensive literature review was conducted on coastal hazard recovery resilience, establishing a conceptual framework that included operational definitions for vulnerability and recovery resilience, along with several feedback mechanisms. The measurement model for coastal hazard recovery resilience comprised four metrics (MRV, LRV, RTSPV, and ND) and a Coastal Resilience Index (CRI). The developed indices were applied to domestic coastal erosion cases, and regional analyses were performed based on the index grades. The results revealed that the four recovery resilience metrics provided insights into the diverse characteristics of coastal erosion recovery resilience at each location. Mapping the composite indices of coastal resilience indicated that the areas along the East Sea exhibited relatively lower coastal erosion recovery resilience than the West and South Sea regions. The developed recovery resilience measurement model can serve as a tool for discussions on post-adaptation strategies and is applicable for determining policy priorities among different vulnerable regional groups.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

Effect of Earthquake Disruptions of Freight Transportation in A Megacity: Case Study for The Los Angeles Area

  • Abadi, Afshin;Ioannou, Petros;Moore, James E. II;Bardet, Jean-Pierre;Park, Jiyoung;Cho, Sungbin
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.110-147
    • /
    • 2022
  • Many megacities are exposed to natural hazards such as earthquakes, and when located in coastal regions, are also vulnerable to hurricanes and tsunamis. The physical infrastructures of transportation systems in megacities have become so complicated that very few organizations can understand their response to extreme events such as earthquakes and can effectively mitigate subsequent economic downfalls. The technological advances made in recent years to support these complex systems have not grown as fast as the rapid demand on these systems burdened by population shift toward megacities. The objective of this paper is to examine the risks imposed on and recoveries of transportation systems in megacities as the result of extreme events such as an earthquake. First, the physical damage to transportation infrastructure, loss of the transportation system performance, and the corresponding economic loss from disruptions to passenger and freight traffic is evaluated. Then, traffic flows are re-routed to reduce vehicles' delay due to earthquakes using a microscopic traffic flow simulator with an optimization model and macroscopic terminal simulator. Finally, the economic impact of the earthquake is estimated nationwide. Southern California is regarded as the region of study. The results demonstrate the effectiveness of the integrated model and provide what and how to prepare innovative resilience policies of urban infrastructure for a natural disaster occurrence.

A Review and Analysis of Earthquake Disaster Risk Assessment Tools and Applications (지진 재해 위험도 평가 분석 도구 사례 분석 연구)

  • Chai, Su-Seong;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.899-906
    • /
    • 2018
  • In the entire process of disaster management, it is very significant to construct related information as well as perform quantitative assessment of damage losses with respect to minimizing the effect of disasters. Many countries have paid much attention not only to studying risk assessment methodologies including constructing inventories, hazard mapping, vulnerability assessment and direct/indirect damage loss estimation, but also to developing risk analysis tools investigated in this paper. We conducted comparison studies of representative earthquake damage risk analysis tools, and the result of this study is able to provide useful information to decision makers and researchers who can contribute to development of effective disaster management.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Linking Spatial Characteristics of Forest Structure and Burn Severity (산림 공간구조 특성과 산불 연소강도와의 관계에 관한 연구)

  • Lee, Sang-Woo;Lim, Joo-Hoon;Won, Myoung-Su;Lee, Joo-Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.5
    • /
    • pp.28-41
    • /
    • 2009
  • Because fire has significant impacts on fauna and flora in forest ecosystems, as well as socioeconomic influences to local community, it has been an important field of study for decades. One of the most common ways to reduce fire risk is to enhance fire-resilience of forest through fuel treatments including thinning and prescribed burning. Since fuel treatment can't be practiced over all forested areas, appropriate and effective strategies are needed. The present study aims to look at the relationship between spatial characteristics of forest structure measured with landscape pattern metrics and burn severity to provide guidelines for effective fuel treatments. Samchuck fire was selected for the study, and 232 grids covering the study areas were generated, and the grid size was 1km. The burn severity is measured with dNBR derived from satellite imagery, and spatial characteristics of forest structure were measured using FRAGSTATS for both landscape and class levels for each 1km grid. The results of this study strongly indicated that heterogeneity in composition and configuration of forests may significantly reduce burn severity. By enhancing heterogeneity of forests, fuel treatments for fire-resilience forest could be more effective.