• Title/Summary/Keyword: Disaster evacuation system

Search Result 150, Processing Time 0.021 seconds

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

A Study on Improvement of Operation Characteristics and Inspection Method of Standby Power Supply such as Emergency Induction Light using Li-ion Capacitor (리튬이온커패시터를 활용한 비상유도등 예비전원장치의 동작 특성 및 점검방법 개선에 관한 연구)

  • Jung, Jun-Chea
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.392-401
    • /
    • 2020
  • Purpose: This study analyzes the operating characteristics of a lithium ion capacitor that can be used as a standby power supply in an emergency, and determines whether the standby power supply is abnormal even by measuring the voltage using a linear proportionality characteristic during charging and discharging. The aim is to provide an experimental basis that can be done. Method: As a method for this study, first, analyze the operation principle and characteristics of the existing backup power supply and lithium ion capacitor, and then measure the voltage of the lithium ion capacitor according to the configuration and system block diagram of the induction lamp used in the experiment. We proceed with the test of the measured value of discharge power for each voltage band to check the amount of power held by the battery and the operation test experiment using induction lamps. Results: Just by checking the charging voltage using the linear proportional characteristics of lithium ion capacitors, it provides a basis for accurately inferring the effective operating time of induction lamp lamps. Conclusion: In the event of a disaster, the lithium ion capacitor is used as a spare power supply for emergency induction lamps to prevent complete discharge of emergency induction lamps, to prevent the problem of performing normal operation of the standby power supply, and to use only a simple voltage measurement to reserve power. It was intended to suggest many uses for evacuation equipment application in the future by making it possible to check whether the device is abnormal.

Analysis of Fire Risk Assessment Indicators of Publicly-Used Establishments using Delphi/AHP (Delphi/AHP를 활용한 다중이용업 신종업종의 화재위험평가지표 분석)

  • Kim, Myung-Cheol;Kim, Hak-Joong;Park, Kyung-Hwan;Youn, Hae-Kwon;Lee, Seung-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.87-94
    • /
    • 2019
  • Through a press release dated July 17, 2018, the Anti-Corruption and Civil Rights Commission recommended that the National Fire Agency develop preventive measures against fire in the "Indoor Archery Ground" and "Room Escape Café" etc., which were originally excluded from the category of "Publicly Used Establishments." This study developed the hierarchy of domains and indicators of measurement for fire risk assessment of the new business of publicly used establishments through the Delphi Method. It analyzed the goodness of fit scores (over 3.00) and secured an average score of 4.25. Using AHP analysis, the ratio of consistency for the domains of measurement of fire risk assessment was found to be 4.0%, which was lower than CR ≤ 0.1 (10%). The consistency of subsequent measurement indicators were distributed in the range of 0.1%~3.6%, and they were identified as being commonly consistent. The indicators of measurement appeared as follows in order of importance and priority: Type of Internal Passage of Establishment and Evacuation Capacity of Exit (0.316), Control of Ignition Source (0.141), Inherent Risk (0.106), Appropriateness and Adaptiveness of Fire Detection System (0.097), Control of Inflammables/Combustibles (0.084), Guides and Facilities helping Evacuation (0.075), Fire Resistant Structure and Finishing Materials (0.060), Compartmentalization and Emergency Exit (0.049), Risk of Fire Expansion (0.046), and Appropriateness and Adaptiveness of Fire Extinguishing Facilities (0.026). The findings of this study are expected to be expansively used as data for future research on the development of fire risk assessment indicators.

A study on use of quantitative risk analysis on life safety performance for the effect of fixed fire fighting system at road tunnel fires (정량적 위험성 평가를 활용한 도로터널 화재시 물분무 소화설비의 피난 안전 효과 연구)

  • Park, Kyung-Hwan;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.1-22
    • /
    • 2012
  • This paper tried to verify whether the fixed fire fighting system (FFFS) that is installed in road tunnel improves evacuation performance or not. Verification was performed according to the Disaster Prevention Facilities Installation and Management Guide at Road Tunnel. Twenty seven different fire scenarios were set up for the verification and the cases that FFFS was installed were compared with the cases that FFFS was not installed. The result of the comparison showed that the average equivalent death was reduced in 26 cases out of 27 cases when water spray extinguishing system was installed. It was confirmed that the risk when was not installed was unacceptable in Hong Kong and the Netherlands. On the other hand, it was confirmed that the risk was reduced to as low as reasonably practicable (ALARP) when was installed. The cumulative frequency of average death in case with FFFS was compared against the frequency of death without FFFS: death of one or more is about 50 times less; 10 or more is about 100 times less; and the death of more than 100 is four times less. It was verified that FFFS makes improved conditions to escape from the fires in road tunnel.

A study on prediction and improvement method of fire risk for a newly built college dormitory (신축 승선생활관의 화재 위험성 예측 및 개선방안에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.228-234
    • /
    • 2016
  • As a college dormitory has the features of high dwelling density and a floating population that becomes crowded during particular times, when a disaster such as a fire occurs, it has the risk of causing much loss of life. In this study, the fire simulation program Fire Dynamics Simulator (FDS), is used to predict the risk when a fire occurs, to analyze the problem, and to suggest an improvement plan for a new cadet dormitory at an university in Korea. The research results are as follows. When a fire occurred in the ironing room inside the cadet dormitory, a smoke detector operated after 65 seconds. Thirteen seconds later, a sprinkler started to operate. The temperature and carbon monoxide density reached the limit value at 241 and 248 seconds, respectively. Because the limit visibility value was reached within 66 seconds after the occurrence of a fire, it is predicted that preparation must be finished and evacuation should begin within 1 minute after the fire occurs, in order to have no casualties. Synthesizing this dormitory fire risk prediction result, the visibility value is considered to be the most dangerous factor for personal safety. Because of this, installing a smoke extraction system is suggested to secure visibility. After the installation of a smoke extraction system, the problem of smoke diffusion in the corridors improved.

Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height (대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술)

  • Cho, Yong-Jun;Lee, Jae-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.269-282
    • /
    • 2006
  • We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

A Survey on the Performance-based Design Status of Fire-fighting Facilities through the Whole Design Drawings and Specifications (설계도서 전수조사를 통한 소방시설분야 성능위주설계 현황조사)

  • Jeon, Eun-Goo;Bae, Young-Hoon;An, Sung-Ho;Hwang, Cheol-Hong;Hong, Won-Hwa;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.155-162
    • /
    • 2019
  • In Korea, the relevant laws and regulations for fire safety in buildings have been revised. Since 2011, Performance-based Design has been conducted for large-scale or high-rise buildings. However, the Korea's performance-based design is still at a level where life safety evaluation using fire and evacuation simulation tools is compared with existing methods. Although related studies have been conducted continuously for the mandatory performance-based design, the fact that it is relatively unsatisfactory for design and construction of fire-fighting facilities as it mainly focuses on administrative and institutional improvement measures or computer simulation. This study collected 91 performance-based design documents that were carried out nationwide at the initial stage of implementation until 2016 to analyze the status of performance-based design of fire-fighting facilities. As a result, fire-fighting facilities, except for fire extinguish system facilities, were not properly designed for performance. Furthermore, the designers found that if corresponding facilities or higher-level equipment with upgraded performance is additionally installed, the performance-based design fared well compared to the existing the prescriptive-based design.

Retraction: A numerical study on the fire smoke behavior by operating the fire prevention system in tunnel-type structure (논문 취소: 터널형 구조물의 방재시설 가동에 따른 화재연기 거동에 관한 수치 해석적 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Lee, Sang-Don;Heo, Won-Ho;Jo, Jong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.189-199
    • /
    • 2019
  • In this study, behaviors of fire smoke in the operation of disaster prevention facilities (smoke damper, jet fan) in a tunnel-type structure (soundproof tunnel) were investigated numerically and results of the investigation were compared and analyzed. Through the simulation and analysis, it was found that there was a significant change in the patterns of fire smoke between the opening of the ceiling of a fire vehicle and the closing, and it was shown that the critical temperatures of PC and PMMA, main materials of a soundproof tunnel were not exceeded. In addition, the simulation of installation intervals of smoke dampers showed that the maximum temperature of a soundproof tunnel without smoke dampers was $552^{\circ}C$ while it reached $405^{\circ}C$ when smoke dampers were installed at the installation interval of 50 m. The simulation of the operation of a jet fan showed that the maximum temperature of a soundproof tunnel without a jet fan was $549^{\circ}C$ while it reached only $86^{\circ}C$ when a jet fan was operating. Therefore, it is highly expected that they could create a favorable environment for evacuation and protection of soundproofing materials, and it would be necessary to promote basic studies on tunnels serving various functions and purposes.

Physical Model Experiment for Estimating Wave Overtopping on a Vertical Seawall under Regular Wave Conditions for On-Site Measurements (현장 월파계측을 위한 규칙파 조건에서 직립식 호안의 월파량 추정에 관한 모형실험)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.75-83
    • /
    • 2023
  • Apart from implementing hardware solutions like raising the crest freeboard of coastal structures to efficiently counter wave-overtopping, there is a simultaneous requirement for software-driven disaster mitigation strategies. These tactics involve the swift and accurate dissemination of wave-overtopping information to the inland regions of coastal zones, enabling the regulation of evacuation procedures and movement. In this study, a method was proposed to estimate wave-overtopping by utilizing the temporal variation of wave heights exceeding the structure's crown level, with the aim of developing an on-site wave measurement system for providing wave-overtopping information in the field. Laboratory model experiments were conducted on vertical seawall structures to measure wave-overtopping volumes and wave runup heights under different wave conditions and structural freeboard variations. By assuming that the velocity of water inundation on the top of the structure during wave-overtopping events is equivalent to the long-wave velocity, an overtopping discharge coefficient was introduced. This coefficient was utilized to estimate the rate of wave-overtopping based on the temporal changes in wave runup heights measured at the top of the structure. Upon reasonably calculating the overtopping discharge coefficient, it was verified that the estimation of wave-overtopping could be achieved solely based on the wave runup heights.