• 제목/요약/키워드: Disaggregation Model

검색결과 42건 처리시간 0.032초

Disaggregation 모형에 의한 월유량의 추계학적 모의발생 (A Stochastic Generation of Synthetic Monthly Flow by Disaggregation Model)

  • 박찬영;서병하
    • 물과 미래
    • /
    • 제19권2호
    • /
    • pp.167-180
    • /
    • 1986
  • 추계 수문학 분야에서 중요한 기법으로 인정이 되어져 가고 있으며 점차 이용도가 높아져 가고 있는 분해모형(Disaggregation Model)을 국내 하천유량의 모의발생에 적용가능성을 파악하기 위해서 이 모형의 구조와 매개변수 산정 방법과 년유량을 월유량으로 분해시키고 발생유량 계열의 통계학적 분석을 실시하였으며 타모형과의 비교를 위해서 Thomas-Fiering 모형을 사용하여 그 결과들을 비교 검토하여 실무에 적용시킬 수 있는 가능성을 평가하였다.

  • PDF

신경망모형을 이용한 시간적 분해모형의 개발 1. 실측자료의 적용 (Development of Temporal Disaggregation Model using Neural Networks 1. Application of the Historic Data)

  • 김성원;김정헌;박기범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1207-1210
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

신경망모형을 이용한 시간적 분해모형의 개발 3. 혼합자료의 적용 (Development of Temporal Disaggregation Model using Neural Networks 3. Application of the Mixed Data)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1215-1218
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the mixed data The mixed data involves the historic data and the generated data using PARMA (1,1). And, the testing data consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

신경망모형을 이용한 시간적 분해모형의 개발 2. 모의자료의 적용 (Development of Temporal Disaggregation Model using Neural Networks 2. Application of the Generated Data)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1211-1214
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the generated data using PARMA (1,1). And, the testing data consist of the historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

비선형 분리모형에 의한 증발접시 증발량의 해석 (Pan Evaporation Analysis using Nonlinear Disaggregation Model)

  • 김성원;김정헌;박기범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

관개배수 네트워크 시스템 구축을 위한 시계열자료의 모형화 (Modeling of Time Series for Irrigation and Drainage Networks System)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1645-1648
    • /
    • 2010
  • The goal of this research is to apply the neural networks model for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks model consists of recurrent neural networks model (RNNM). The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks model, it is composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of RNNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

SVM-NNM을 이용한 증발접시 증발량자료의 분해기법 (Disaggregation Approach of the Pan Evaporation using SVM-NNM)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1560-1563
    • /
    • 2010
  • The goal of this research is to apply the neural networks model for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks model consists of support vector machine neural networks model (SVM-NNM). The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks model, it is composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of SVM-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

추계학적 신경망 접근법을 이용한 수문학적 시계열의 모형화 (Modeling of Hydrologic Time Series using Stochastic Neural Networks Approach)

  • 김성원;김정헌;박기범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1346-1349
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

계층적 생산계획의 계품군 분해해법 개발 (Development of the Family Disaggregation Algorithm for Hierarchical Production Planning)

  • 김창대
    • 한국경영과학회지
    • /
    • 제18권1호
    • /
    • pp.1-18
    • /
    • 1993
  • The family disaggregation model of hierarchical production planning (HPP) is the problem of (0 -1) mixed integer programming that minimizes the total sum of setup costs and inventory holding costs over the planning horizon. This problem is hard in a practical sense since optimal solution algorithms have failed to solve it within reasonable computation times. Thus effective familoy disaggregation algorithm should be developed for HPP. The family disaggregation algorithm developed in this paper consists of the first stage of finding initial solutions and the second stage of improving initial solutions. Some experimental results are given to verify the effectiveness of developed disaggregation algorithm.

  • PDF

구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가 (An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data)

  • 전병운
    • 한국지역지리학회지
    • /
    • 제12권5호
    • /
    • pp.614-630
    • /
    • 2006
  • 자연 및 기술재해에 빠르고 효과적으로 대응하기 위해서는 그 재해지역 내에 있는 인구수를 정확히 추정할 필요가 있다. 그러나 센서스 구역과 재해지역의 공간적 불일치 문제 때문에, 재해지역 내에 있는 인구수를 정확하게 추정할 때에는 구역단위 인구자료를 공간적으로 세분화할 필요가 있다. 본 논문은 센서스 블럭그룹 내의 인구를 개개의 화소로 세분화하기 위한 밀도 구분적 표면모델을 구현하고, 그 표면기반 공간적 세분화 모델의 성능을 통계적 및 가시적으로 평가한다. 표면기반 공간적 세분화 모델은 밀도 구분적 내삽법과 위성영상으르부터 추출된 토지이용 및 피복자료를 사용하며 지리정보시스템에서 구현되었다. 토지이용 및 피복자료는 밀도 구분적 내삽법에서 인구의 지리적 분포에 관한 추가정보를 제공했고, 토지이용 및 피복자료의 퍼센트에 기반을 둔 경험적 표본추출법과 지역가중법은 각 화소에 대한 밀도 구분적 가중치를 객관적으로 결정하기 위해서 사용되었다. 표면기반 공간적 세분화 모델은 애틀란타 대도시권의 밀도 구분적 인구표면을 만드는데 적용되었다. 그 밀도 구분적 인구표변의 정확도는 센서스 수치와의 비교를 통해서 RMSE와 수정 RMSE를 사용하면서 검증되었다. 또한, 각 센서스 트랙과 블럭그룹별 오차들은 퍼센트 오차지도들에 의해서 가시화 되었다. 분석결과에 따르면, 밀도 구분적 인구표면은 인구수의 정확한 추정치를 제시할 뿐만 아니라, 센서스 블록그룹 내의 인구의 상세한 공간분포를 보여 준다. 또한, 인구표면은 대개 교외 및 산림지역 그리고 도심지역에서 인구를 과소평가하거나 과대평가하는 경향이 있다는 것을 밝혀냈다.

  • PDF