• 제목/요약/키워드: Directional source

검색결과 178건 처리시간 0.023초

한국 의성소분지 북동부 백악기 하양층군의 고수류 (Paleocurrent Analysis of the Cretaceous Hayang Group in the Northeastern Part of Euiseong Subbasin, Southeast Korea)

  • 고인석;이용태;신영식
    • 한국석유지질학회지
    • /
    • 제4권1_2호
    • /
    • pp.12-19
    • /
    • 1996
  • 백악기 의성소분지 북동부 하양층군 (일직층, 후평동층, 점곡층)에서 관찰된 방향성 퇴적구조는 하도구조, 곡상사층리, 판상사층리, 사엽층리 및 유수연흔 등이다. 이들 퇴적구조들은 주로 세립사암으로부터 역질의 극조립사암에 발달한다. 대소규모의 하도구조는 모든 층에서 ,하도구조와 곡상사층리는 일직층 (충적선상지 환경)에서 , 판상사층리 , 판상사엽층리 , 유수연흔은 후평동층 (범람원 환경)과 점곡층 (호수변 환경) 하부에서 자주 관찰된다. 연구지역에서 측정한 4깨의 방향성 퇴적구조들의 벡타평균 방향은 $290^{\circ}C$며 표준편차는 $\pm68$이다. 주된 고수류의 흐름은 서북서 방향을 지시하며. 퇴적물의 기원지는 연구지역으로 부터 동남동 방향의 어느 곳에 있었음을 시사한다

  • PDF

한반도 지진의 지진원 상수 (The Seismic Source Parameters for Earthquakes Occurring in the Korean Peninsula)

  • 김성균;김병철
    • 한국지구과학회지
    • /
    • 제29권2호
    • /
    • pp.117-127
    • /
    • 2008
  • 한반도와 그 주변에서 발생한 44개의 지진에 대한 지진원 상수들을 결정하여 그들 사이의 관계를 조사하였다. 모서리 주파수와 지진모멘트의 결정에는 Snoke(1987)의 방법을 적용하였다. 일반적으로 하나의 지진에 대하여 다른 관측소에서 결정된 지진원 상수들은 서로 다른 값을 보여 준다. 이러한 불일치는 지진원에서의 에너지 확산과 전파과정중의 감쇠 및 증폭의 방향별 차이에 대한 불충분한 고려에서 기인하는 것으로 해석된다 이러한 방향에 따른 효과를 제거하기 위하여 모서리 주파수와 지진모멘트는 평균값을 취했으며, 이 평균값으로부터 다른 지진원 상수들을 결정하였다. 이 연구에서 구한 정적인 응력강하량은 일정한 크기 이상의 지진에 대하여 지진모멘트와 무관한 경향을 보여 준다. 지진모멘트가 대략 $1.0{\times}10^{22}$ dyne-cm($M_L = 4.0$에 대응) 이하인 지진은 지진모멘트가 감소함에 따라 응력강하량이 감소하는 경향을 보여준다. 이 사실은 어떤 한계규모 이하의 지진에서 지진원 상수들 사이의 비례법칙이 깨짐을 의미한다.

반사음이 존재하는 양귀 모델의 음원분리에 관한 연구 (A study on sound source segregation of frequency domain binaural model with reflection)

  • 이채봉
    • 융합신호처리학회논문지
    • /
    • 제15권3호
    • /
    • pp.91-96
    • /
    • 2014
  • 두 개의 입력소자에 의한 음원방향 및 분리방법으로서는 연산량이 적고, 음원분리 성능이 높은 주파수 양귀 모델(Frequency Domain Binaural Model : FDBM)이 있다. FDBM은 주파수 영역에서 양귀간 위상차(Interaural Phase Difference : IPD) 및 양귀간 레벨차(Interaural Level Difference : ILD)를 구하여 음향신호가 오는 방향과 음원의 분리처리를 한다. 그러나 실제 환경에서는 반사음의 문제가 되고 있다. 이러한 반사음에 의한 영향을 줄이기 위하여 선행음 효과에 의한 직접음의 음상정위를 모의하여 초기 도착음을 검출하고 직접음이 오는 방향과 음원분리 방법을 제시하였다. 제시한 방법을 이용하여 음원방향 추정 및 분리에 대한 성능을 시뮬레이션으로 검토하였다. 그 결과, 방향추정은 음원이 오는 방향에서 ${\pm}10%$의 범위로 집중되어 음원의 방향과 가까운 값으로 추정되었다, 반사음이 존재하는 경우의 음원분리는 기존의 FDBM에 비하여 코히런스(Coherence), 음성품질 지각평가 PESQ(Perceptual Evaluation of Speech Quality : PESQ)가 높고, 정면에서의 지향특성 감쇠량이 작아 분리의 정도가 개선됨을 나타내었다. 그러나 반사음이 존재하지 않는 경우는 분리 정도가 낮았다.

Matrix-Based Intelligent Inference Algorithm Based On the Extended AND-OR Graph

  • Lee, Kun-Chang;Cho, Hyung-Rae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.121-130
    • /
    • 1999
  • The objective of this paper is to apply Extended AND-OR Graph (EAOG)-related techniques to extract knowledge from a specific problem-domain and perform analysis in complicated decision making area. Expert systems use expertise about a specific domain as their primary source of solving problems belonging to that domain. However, such expertise is complicated as well as uncertain, because most knowledge is expressed in causal relationships between concepts or variables. Therefore, if expert systems can be used effectively to provide more intelligent support for decision making in complicated specific problems, it should be equipped with real-time inference mechanism. We develop two kinds of EAOG-driven inference mechanisms(1) EAOG-based forward chaining and (2) EAOG-based backward chaining. and The EAOG method processes the following three characteristics. 1. Real-time inference : The EAOG inference mechanism is suitable for the real-time inference because its computational mechanism is based on matrix computation. 2. Matrix operation : All the subjective knowledge is delineated in a matrix form, so that inference process can proceed based on the matrix operation which is computationally efficient. 3. Bi-directional inference : Traditional inference method of expert systems is based on either forward chaining or backward chaining which is mutually exclusive in terms of logical process and computational efficiency. However, the proposed EAOG inference mechanism is generically bi-directional without loss of both speed and efficiency.

  • PDF

A New Directional Coupler Type Partial Discharge Sensor Installed on the Power Lead of Rotating Machine

  • Yi, Sang-Hwa;Hwang, Don-Ha;Park, Wee Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1769-1776
    • /
    • 2016
  • For on-line partial discharge (PD) monitoring of rotating machines, a novel sensor is proposed, which can be installed on the power lead inside the terminal box of the machine. The sensor has been designed to have high capacitance, and minimal reflection of measured pulses. As a sensitivity of the sensor, transfer impedance $Z_t$ has been measured and compared to conventional coupler-type sensors. A simple method is presented for measuring $Z_t$ of coupler sensors, using a vector network analyzer and a practical lead-cable of rotating machine. Through this method, it became possible to measure the $Z_t$ of coupler sensors including the installation environment of them. The $Z_t$ of the proposed sensor is higher than that of same sized other conventional couplers at frequencies between 30 and 92 MHz. Another sensitivity test has been performed using a PD calibrator as a test pulse source. The proposed sensor has higher measured peak voltage than the conventional coupler type sensors when the same charges were input.

Bearing Estimation of Narrow Band Acoustic Signals Using Cardioid Beamforming Algorithm in Shallow Water

  • Chang, Duk-Hong;Park, Hong-Bae;Na, Young-Nam;Ryu, Jon-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권2E호
    • /
    • pp.71-80
    • /
    • 2002
  • This paper suggests the Cardioid beamforming algorithm of the doublet sensors employing DIFAR (directional frequency analysis and recording) sensor signals in the frequency domain. The algorithm enables target bearing estimation using the signals from directional sensors. The algorithm verifies its applicability by successfully estimating bearings of a target projecting ten narrow-band signals in shallow water. The estimated bearings agree very well with those from GPS (global positioning system) data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1°∼ 6.7°and 13.3∼43.6°, respectively. Estimation errors are caused by SNR (signal to noise ratio) degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Multihop Vehicle-to-Infrastructure Routing Based on the Prediction of Valid Vertices for Vehicular Ad Hoc Networks

  • Shrestha, Raj K.;Moh, Sangman;Chung, IlYong;Shin, Heewook
    • 대한임베디드공학회논문지
    • /
    • 제5권4호
    • /
    • pp.243-253
    • /
    • 2010
  • Multihop data delivery in vehicular ad hoc networks (VANETs) suffers from the fact that vehicles are highly mobile and inter-vehicle links are frequently disconnected. In such networks, for efficient multihop routing of road safety information (e.g. road accident and emergency message) to the area of interest, reliable communication and fast delivery with minimum delay are mandatory. In this paper, we propose a multihop vehicle-to-infrastructure routing protocol named Vertex-Based Predictive Greedy Routing (VPGR), which predicts a sequence of valid vertices (or junctions) from a source vehicle to fixed infrastructure (or a roadside unit) in the area of interest and, then, forwards data to the fixed infrastructure through the sequence of vertices in urban environments. The well known predictive directional greedy routing mechanism is used for data forwarding phase in VPGR. The proposed VPGR leverages the geographic position, velocity, direction and acceleration of vehicles for both the calculation of a sequence of valid vertices and the predictive directional greedy routing. Simulation results show significant performance improvement compared to conventional routing protocols in terms of packet delivery ratio, end-to-end delay and routing overhead.

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • 허승진;김기범;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF

DIFAR 빔형성 알고리듬을 이용한 협대역 음향신호의 방향성 추정 (The Bearing Estimation of Narrowband Acoustic Signals Using DIFAR Beamforming Algorithm)

  • 장덕홍;박홍배;정문섭;김인수
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.169-184
    • /
    • 2002
  • In order to extract bearing information from the directional sensors of DIFAR(directional frequency analysis and recording) that is a kind of passive sonobuoy, the cardioid beamforming algorithm applicable to DIFAR system was studied in the frequency domain. the algorithm uses narrow-band signals propagated though the media from the acoustic sources such as ship machineries. The proposed algorithm is expected to give signal to noise ratio of 6dB when it uses the maximum response axis(MRA) among the Cardioid beams. The estimated bearings agree very well with those from GPS data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1~$6.7^{\circ}$ and 13.3~$43.6^{\circ}$, respectively. Estimation errors are caused by SMR degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.