• Title/Summary/Keyword: Directional relay

Search Result 48, Processing Time 0.024 seconds

The Dynamic Performance of a Electro-Dynamometer Type Protective Relay for the D.C Component in the Fault Current (전류력계형 계전기의 고장전류중 직류전류분에 의한 동작특성)

  • 이재인
    • 전기의세계
    • /
    • v.27 no.6
    • /
    • pp.54-57
    • /
    • 1978
  • An analytical investigation has been carried out for the motion of moving element in electro-dynamometer type directional power relay under A.C source. For the more a time dependent kinetic performance of the element can also be deduced for the D.C component in fault current. The results obtained thus for show that, in the relay with stopper, the performance time for the equal D.C and A.C component can be shorten ca. 0.5Hz in comparison with the fact, the performance time exhibits to delay ca. 0.75Hz under the same conditions for the case of the relay without stopper, it appear that these differences of performance times will not give vise any difficultys for the apects of practical case, however, the obtain results can be applicable in the course of the design of the relay.

  • PDF

Zero-one Integer Programming Approach to Determine the Minimum Break Point Set in Multi-loop and Parallel Networks

  • Moirangthem, Joymala;Dash, Subhransu Sekhar;Ramaswami, Ramas
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 2012
  • The current study presents a zero-one integer programming approach to determine the minimum break point set for the coordination of directional relays. First, the network is reduced if there are any parallel lines or three-end nodes. Second, all the directed loops are enumerated to reduce the iteration. Finally, the problem is formulated as a set-covering problem, and the break point set is determined using the zero-one integer programming technique. Arbitrary starting relay locations and the arbitrary consideration of relay sequence to set and coordinate relays result in navigating the loops many times and futile attempts to achieve system-wide relay coordination. These algorithms are compared with the existing methods, and the results are presented. The problem is formulated as a setcovering problem solved by the zero-one integer programming approach using LINGO 12, an optimization modeling software.

Application of Directional Over Current Protection Schemes Considering the Fault Characteristics in the Distribution System with Dispersed Generation (분산전원이 연계된 배전계통의 고장특성을 고려한 방향성 보호계전 방식 적용 연구)

  • Jung, Won-Wook;Lee, Hak-Ju;Kwon, Seong-Chul;Chae, Woo-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.97-107
    • /
    • 2010
  • Penetration of distributed generator(DG) to power distribution system can cause malfunction of existing protection schemes. Because grid interconnected DG can contribute fault currents and make bidirectional current flows on the system, fault contributions from DG can cause an interference of protection relay operation. Therefore, over current protection device of the distribution system with DGs need directional protection schemes. In this paper, improved directional protection algorithms are proposed for the distribution system with DG considering their fault characteristics. And than, these directional protection algorithms are tested and validated in various fault conditions. From the simulation results, it can be seen that the proposed directional protection algorithms are practically efficient for the radial distribution system with DG.

A Directional Relay Algorithm Using Positive-Sequence Superimposed Quantity for Transmission Line Protection (정상 성분 변화량을 이용한 송전선로 보호용 방향 계전 알고리즘)

  • 이명수;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.226-233
    • /
    • 2003
  • Directional elements are fundamental to protection scheme security and selectivity, performing such critical tasks as supervising distance elements and controlling overcurrent elements. But, conventional operating principles for directional detection based on negative or zero sequence quantify do not satisfy the requirements for improved sensitivity and fast operation under any fault conditions. In this paper, new algorithm for directional elements is proposed. The proposed algorithm use the positive-sequence superimposed voltages and currents in order to be used in all fault conditions. Also, because this algorithm uses a voltage compensation method. it can be well operated under strong source conditions.

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.

Ground fault protective relaying schemes for DC traction power supply system (비접지 DC 급전계통에서 전류형 지락보호계전 방법)

  • 정상기;정락교;이성혁;김연수;조홍식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

A PSCAD Modeling of Protection Relay of On-Line Distribution System (PSCAD를 이용한 상시 루프배전시스템의 보호계전기 모델)

  • Kim, Jin-Su;Park, Jin-Hyeon;Cho, Bo-Hyeon;Moon, Won-Sik;Cho, Sung-Min;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.406-407
    • /
    • 2011
  • The closed-loop distribution system is more flexible and more reliable than radial system. If any type fault occurs, the reliability of system can be better by providing electrical energy through another distribution line. However, it needs protection device coordination of different type. Typically, it is available by using directional overcurrent relay (67). This paper gives a solution about loop protection relay modeling which can be used by the simulation tools.

  • PDF

A Study of Verification on Application of Directional OCR and OCGR for Power System with Small Scale Cogeneration (소형 열병합 발전소의 계통연계시 방향성 과전류 및 지락과전류 계전기의 적용 검증 연구)

  • Lee, Hee-Tae;Cho, Man-Young;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.944-950
    • /
    • 2008
  • When small cogenerators are operated in connected with power system, there are many positive aspects such as the reduction of power plant construction, making a improvement of power security etc. At the same time, there are some negative effects or difficulties such as we should make sure of protective coordination, especially, Actually these are not fault, but it is likely to consider the current as the fault. This is one of major causes of malfunctions for protective relays in power distribution system which is including interconnection point. Thus, in this paper, We showed that the directional protection is necessary to the dispersed generation system which is including connection point. We also executed contingency analysis to find out the magnitude of fault current and direction which are classified by fault points, length of line and kinds of faults using ETAP power system analysis program.