• Title/Summary/Keyword: Directional Stability

Search Result 191, Processing Time 0.03 seconds

Effect of Vestibular Sensory Stimulation Exercise on Limit of Stability, Dynamic Weight Shift, and Upper and Lower Extremities Reaction Time in Adult Women (안뜰감각 자극운동이 성인여성의 안정성한계, 동적체중이동 및 팔다리 반응시간에 미치는 영향)

  • Kim, Chung-Yoo;Lee, Keon-Cheol;Lee, Yeon-Seop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.2
    • /
    • pp.203-210
    • /
    • 2022
  • Purpose : The purpose of this study was to investigate the effect of vestibular sensory stimulation exercise on the limit of stability, dynamic weight shift, and upper and lower extremities reaction time in adult women. Methods : This study was conducted with 30 female. All subjects were randomly and equally assigned to an experimental group and a control group of 15 each. Subjects assigned to the experimental group received vestibular sensory stimulation training for 6 weeks. For the intervention, vestibular sensory stimulation exercises were conducted by referring to the Hamid exercise method and the Cawthorne-Cooksey exercise method, and the control group did not receive any intervention. All subjects were tested for limit of stability, dynamic weight shift, and upper and lower extremities reaction time before and after the intervention. Results : The results of this study showed significant differences between groups in reaction time, moving velocity, and directional control in the limit of stability test after intervention. In the dynamic weight shift test after intervention, there was a significant difference between the groups in the slow directional control of left and right. And in the upper and lower extremities reaction time test after intervention, both scores and reaction time showed significant differences between groups. Conclusion : As a result, the three vestibular sensory stimulation exercises applied in this study improved the limit of stability, dynamic weight shift, and upper and lower extremities reaction time.

Experimental Study on the Calibration of Bi-directional High Pressure Pile Load Test (양방향 고유압 말뚝재하시험장치의 보정에 관한 실험적 연구)

  • Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.303-311
    • /
    • 2008
  • In the case of bi-directional high pressure pile load test with double-acting jack, the shortcomings of bi-directional pile load test with single-acting jack could be solved, low-cost of test could be sure, the limits of loading capacity could be overcome and quality assurance of service plie could be confirmed. In this study, to confirm the stability, the reliability and the application of bi-directional high pressure pile load test with double-acting jack, the calibration test for high pressure oil jacks, the length of high pressure hose and tunable high pressure pipe system were performed. As a result, credibility was very high because the reliability of test results was approached at about 1.0.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

A study on hydrodynamic characteristics for. construction progress of rubble mound breakwaters (사석제의 건설 공정설계를 위한 수리학적 특성에 관한 연구)

  • Kim, Hong-Jin;Ryu, Cheong-Ro;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.317-322
    • /
    • 2003
  • The Sectional and Spatial failure modes are discussed using the experimental data with long crest wave and multi-directional waves considering the failure modes occurring around the rubble-mound breakwater. The spatial & sectional stability and failure mode around the rubble-mound structures with construction progress can be summarized as follows: 1) The rubble mound structures at basic construction step was occurred serious failures when ${\xi}$ was about 6.5. 2) It was clarified that the failure modes at the round head of detached breakwater are classified as failure by plunging breaking on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached break water. 3) The failure mode was found in the lower wave height than the design wave by the breaker depth effect. 4) The failure on the slope were also developed at the lee side of the round head because diffracted wave propagated into the behind area by grouping effect of multi-directional irregular wave.

  • PDF

Rotordynamic Analysis of Balance Shafts (밸런스샤프트의 회전체역학 해석)

  • Nho, Jong-Won;Shin, Bum-Sik;Park, Heung-Joon;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.531-536
    • /
    • 2006
  • In four cylinder engine, the second order inertia force occurs due to the reciprocating parts of the cylinder. Because the magnitude of the inertia force is proportional to a square of the angular velocity of crank shaft, engine gets suffered from vibration excited by unbalanced inertia force in high speed. This vibration excited by the unbalanced inertia force can be canceled by applying a balance shaft. Balance shaft has one or more unbalance mass and rotates twice quickly than the crank shaft. In this paper, an unbalanced force caused by the rotating of unbalance mass of balance shafts was calculated. The directional equivalent stiffness and damping coefficients of the journal bearing of balance shafts was calculated. Equations of rotational vibration modes were derived using directional stiffness and damping coefficients. The dynamic stability of balance shafts was analyzed and evaluated for two type models using the equivalent stiffness and damping coefficients. An efficient procedure to he able to evaluate dynamic stability and design optimal balance shaft was proposed.

  • PDF

A Study on the Longitudinal Flight Control Law of T-50 (T-50 세로축 비행제어법칙 설계에 관한 연구)

  • Hwang Byung-moon;Kim Seong-Jun;Kim Chong-sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.963-969
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modem version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability, The T-50 longitudinal control laws employ the dynamic inversion and proportional-plus-integral control method. This paper details the design process of developing longitudinal control laws for the RSS aircraft, utilizing the requirement of MIL-F-8785C. In addition, This paper addresses the analysis of aircraft characteristics such as damping, natural frequency, gain and phase margin about state variables for longitudinal inner loop feedback design.

A study onthe stability of a missile body ina simplified model by finite element method (유한요소법에 의한 단순화된 미사일 몸체 모델의 안정성에 관한 연구)

  • ;;Kim, Chan Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.293-302
    • /
    • 1981
  • In this paper, the stability of a flexible missle, idealized as a free-free beam, is evaluated by using the finite element method. For the study, heavy machinery part is modeled as a concentrated mass and the thrust, which is controlled by a feedback sensor located at a predetermined position, is considered as a constant follower force. The aerodynamic forces, the structural damping, the cross sectional variation servo lag effect are neglected in this study. With unconstrained variational principle, the finite element method is applied to the nondimensionalized beam eqution. The matrix eigenvalue equation is obtained and the eigenvalues are calculated by a computer for the stability analysis. The stability is evaluated by the inspection of the eigenvalues are calculated by a computer for the stabilith analysis. The stabilith is evaluated by the inspection of the eigenvalues of the problem. For the study, the behaviors of the eigenvalues at various thrusts and the effects of the magnitudes and positions of the concentrated mass and directional control constant are analyzed.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.