In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.
본 논문에서는 단일 센서 기기를 통해 획득된 CFA (color filter array) 영상의 효과적인 디모자이킹(demosaicking)을 위하여 방향성 기반 보간법과 영상의 비지역 특성을 이용하는 방법을 제안한다. G 채널을 복원하기 위하여 수직 및 수평방향 뿐만 아니라 대각선 방향을 고려하고, 영상의 지역적 특성을 위하여 비교적 적은 수의 픽셀을 이용하여 보간한다. 이후, 영상의 비지역적 특성을 반영하여 에지 근처에서의 복원능력 및 색상오류 등에 의한 화질열화를 개선하기 위하여 보간된 픽셀에 NLM (nonlocal means) 필터링을 적용한다. R과 B 채널은 이미 복원된 G 채널의 정보를 이용하여 방향성 기반 보간법 및 NLM 필터링을 적용하여 복원한다. 채도가 높고 색상변화가 비교적 큰 McMaster 영상에 대해서 수행한 실험결과는 제안하는 디모자이킹 방법이 기존의 방법에 비해 PSNR 기반의 객관적 성능평가 결과가 우수하고, 주관적 화질 측면에서 에지 및 텍스처와 같은 영상의 구조를 잘 보존하고 색상오류 등과 같은 왜곡현상을 감소시켜 우수한 성능을 나타냄을 알 수 있다.
지문영상으로부터 특징점을 정확하게 추출하는 것은 효과적인 지문인식 시스템의 구축에 매우 중요하다. 하지만 지문영상의 품질에 따라 특징점 추출의 정확도가 달라지기 때문에 지문인식 시스템에서의 영상 전처리 과정은 시스템의 성능에 크게 영향을 미친다. 본 논문에서는 지문영상으로부터 명암값의 평균 및 분산, 블록 방향성 차, 방향성 변화도, 융선과 골의 두께 비율 등의 5가지 특징을 추출하고 계층적 클러스터링 알고리즘으로 클러스터링하여 영상의 품질 특성을 분석한 후 습성(oily), 보통(neutral), 건성(dry)의 특성에 적합하게 영상을 개선하는 지식기반 전처리 방법을 제안한다. NIST DB 4와 인하대학교 데이타를 이용하여 실험한 결과, 클러스터링 기법이 영상의 특성을 제대로 구분함을 확인할 수 있었다. 또한 제안한 방법의 성능 평가를 위해 품질 지수와 블록 방향성 차이를 측정하여 일반적인 전처리 방법보다 지식기반 전처리 방법이 품질 지수와 블록 방향성 차이를 향상시킴을 확인할 수 있었다.
Active shape model is widely used in the field of image processing especially on arbitrary meaningful shape extraction from single gray level image. Cootes et. al. showed efficient detection of variable shape from image by using covariance and mean shape from learning. There are two stages of learning and testing. Hahn applied enhanced shape alignment method rather than using Cootes's rotation and scale scheme. Hahn did not modified the profile itself. In this paper, the method using directional one dimensional profile is proposed to enhance Cootes's one dimensional profile and the shape alignment algorithm of Hahn is combined. The performance of the proposed method was superior to Cootes's and Hahn's. Average landmark estimation error for each image was 27.72 pixels and 39.46 for Cootes's and 33.73 for Hahn's each.
In this paper an efficient morphologica algorithm for reducing gaussian and impulse noise in gray-scale image is presented. Based on the edge information the input image is partitioned into a flat region and an edge region, then different algorithms are selectively applied to each region. in case of impulse noise, MGR (morphologica grayscale reconstruction) algorithm with directional SE (structuring element) is applied to the flat region. For theedge region opening-closing (closing-opening) is used instead of dialation (erosion), so that the remaining noise around large objects can be removed. In case of gaussian noise, 5*5 OCCO(opening closing closing opening) and 3*3 DMF(directional morphological filter ) are used for the flat region and the edgeregion, respectively. In order to remove discontinuity at the edge boundary, the algorithm uses 3*3 OCCO around the edge region to reconstruct the final image. Experimetnal results have shown that the proposed algorithm achieves a high performance in terms of noise removal, detail preservation, and NMSE.
B frame bi-directional predictions and the DIRECT mode coding of the H.264 video compression standard necessitate a complex mode decision process, resulting in a long computation time. To make H.264 feasible, this paper proposes an image backtrack-based fast (IBFD) algorithm and evaluates the performances of two promising fast algorithms (i.e., AFDM and IBFD). Evaluation results show that an image backtrack-based fast (IBFD) algorithm can determine DIRECT mode macroblocks with 13% higher accuracy, as compared with the AFDM. Furthermore, IBFD is shown to reduce the motion estimation time of B frames by up to 23% with a negligible quality degradation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4549-4566
/
2017
This work presents a novel facial descriptor, which is named as multiscale adaptive local directional texture pattern (MALDTP) and employed for expression recognition. We apply an adaptive threshold value to encode facial image in different scales, and concatenate a series of histograms based on the MALDTP to generate facial descriptor in term of Gabor filters. In addition, some dedicated experiments were conducted to evaluate the performance of the MALDTP method in a person-independent way. The experimental results demonstrate that our proposed method achieves higher recognition rate than local directional texture pattern (LDTP). Moreover, the MALDTP method has lower computational complexity, fewer storage space and higher classification accuracy than local Gabor binary pattern histogram sequence (LGBPHS) method. In a nutshell, the proposed MALDTP method can not only avoid choosing the threshold by experience but also contain much more structural and contrast information of facial image than LDTP.
This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.
본 논문에서는 전송 에러로 인해 발생하는 영상의 손실을 정밀한 방향성 보간(FDI: Fine Directional Interpolation)을 이용하여 복원하는 기법을 제안한다. 제안된 알고리즘은 공간 방향 벡터(SDV: Spatial Direction Vector)를 도입한다. 공간 방향 벡터는 손실블럭 주위의 영상 데이터의 에지 정보를 추출하여 구한다. 이 후 손실된 영상 블록은 공간 방향 벡터를 이용하여 픽셀단위로 적응적으로 보간함으로써 복원된다. 이러한 방식은 평탄한 영역뿐만 아니라 에지를 포함한 복잡한 영역도 우수하게 복원할 수 있다. 실험결과 제안된 방식은 기존의 공간적 에러은닉 방법과 비교하여 성능이 우수하다는 것을 알 수 있다.
A morphological filtering algorithm using directional information is presented. Directional filtering technique is effective in reducing noises and preserving edges. The proposed directional filtering is composed of two stage filtering processes. The opening and closing operations in the lst stage are performed for the pixels is aligned to the vertical, horizontal, and two diagonal directions, respectively. The opening operation supresses the positive impulse noises, while the closing operation the negative ones. Then, each directional result and their average value are filtered by the opening or closing operations in the 2nd stage. The averaging operation diminishes the effects of Gaussian noises in the homogeneous regions. Thus, the morphological operation in the 1 st stageremoves the impulse noises and in 2nd stage reduces. Gaussian ones. The experimental results show that the proposed filtering is superior to the existing nonlinear filtering in the aspects of the subjective quality. Also, the morphological filtering method reduces the computational loads.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.