• Title/Summary/Keyword: Directional Image

Search Result 481, Processing Time 0.029 seconds

Cost Effective Mobility Anchor Point Selection Scheme for F-HMIPv6 Networks (F-HMIPv6 환경에서의 비용 효율적인 MAP 선택 기법)

  • Roh Myoung-Hwa;Jeong Choong-Kyo
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.265-271
    • /
    • 2006
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps: preprocessing, classification, and matching, in the classification, we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Lane Detection Algorithm for Night-time Digital Image Based on Distribution Feature of Boundary Pixels

  • You, Feng;Zhang, Ronghui;Zhong, Lingshu;Wang, Haiwei;Xu, Jianmin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.188-199
    • /
    • 2013
  • This paper presents a novel algorithm for nighttime detection of the lane markers painted on a road at night. First of all, the proposed algorithm uses neighborhood average filtering, 8-directional Sobel operator and thresholding segmentation based on OTSU's to handle raw lane images taken from a digital CCD camera. Secondly, combining intensity map and gradient map, we analyze the distribution features of pixels on boundaries of lanes in the nighttime and construct 4 feature sets for these points, which are helpful to supply with sufficient data related to lane boundaries to detect lane markers much more robustly. Then, the searching method in multiple directions- horizontal, vertical and diagonal directions, is conducted to eliminate the noise points on lane boundaries. Adapted Hough transformation is utilized to obtain the feature parameters related to the lane edge. The proposed algorithm can not only significantly improve detection performance for the lane marker, but it requires less computational power. Finally, the algorithm is proved to be reliable and robust in lane detection in a nighttime scenario.

Recognition of English Calling Cards by Using Projection Method and Enhanced RBE Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.474-479
    • /
    • 2003
  • In this paper, we proposed the novel method for the recognition of English calling cards by using the projection method and the enhanced RBF (Radial Basis Function) network. The recognition of calling cards consists of the extraction phase of character areas and the recognition phase of extracted characters. In the extraction phase, first of all, noises are removed from the images of calling cards, and the feature areas including character strings are separated from the calling card images by using the horizontal smearing method and the 8-directional contour tracking method. And using the image projection method, the feature areas are split into the areas of individual characters. We also proposed the enhanced RBF network that organizes the middle layer effectively by using the enhanced ART1 neural network adjusting the vigilance threshold dynamically according to the homogeneity between patterns. In the recognition phase, the proposed neural network is applied to recognize individual characters. Our experiment result showed that the proposed recognition algorithm has higher success rate of recognition and faster learning time than the existing neural network based recognition.

Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography (가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석)

  • Kim, Bong-Hwan;Lee, Sang-Hwan;Yasuda, Hideyuki;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.

Finite Element Analysis for Electron Optical System of a Thermionic SEM (열전자방사형 주사전자 현미경 전자광학계의 유한요소해석)

  • Park, Keun;Jung, Huen-U.;Kim, Dong-Hwan;Jang, Dong-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1288-1293
    • /
    • 2007
  • The present study covers the design and analysis of a thermionic scanning electron microscope (SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. In the design process, the dimension and capacity of the SEM components need to be optimally determined with the aid of finite element analyses. Considering the geometry of the filament, a three-dimensional (3D) finite element analysis is utilized. Through the analysis, the beam emission characteristics and relevant trajectories are predicted from which a systematic design of the electron optical system is enabled. The validity of the proposed 3D analysis is also discussed by comparing the directional beam spot radius. As a result, a prototype of a thermionic SEM is successfully developed with a relatively short time and low investment costs, which proves the adoptability of the proposed 3D analysis.

  • PDF

A Study on Edge Detection using Modified Histogram Equalization (변형된 히스토그램 평활화를 적용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1221-1227
    • /
    • 2015
  • Edge detection is one of the important technologies to simplify images in the text, lane and object recognition implementation process, and various studies are actively carried out at home and abroad. Existing edge detection methods include a method to detect edge by applying directional gradient masks in spatial space, and a mathematical morphology-based edge detection method. These existing detection methods show insufficient edge detection results in excessively dark or bright images. In this regard, to complement these drawbacks, we proposed an algorithm using the Sobel and histogram equalization among the existing methods.

Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Spaceborne Cryocooler (우주용 냉각기의 미소진동을 이용한 에너지 수확 시스템의 실험적 성능검증)

  • Jung, Hyunmo;Kwon, Seongcheol;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2016
  • The on-board appendages of satellites with mechanical moving parts such as the fly-wheel, the control-moment gyro, the cryocooler, and the gimbal-type directional antenna can generate an undesirable micro-vibration disturbance, which is one of the main causes of the image-quality degradation that affects high-resolution observation satellites. Consequently, the isolation of the micro-vibration issue has always been considered as salient, and the micro-vibration is therefore the focus of this study wherein a complex system that can provide the dual functions of a guaranteed vibration-isolation performance and electrical energy harvesting is proposed. The vibration-isolation and energy-harvesting performances of the complex system are predicted through a numerical analysis based on the characteristics that are obtained from component-level tests. In addition, the effectiveness of the complex system that is proposed in this study is verified through an assembly-level functional-performance test.

Analysis of ATS Verification Results for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.448-451
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is an electro-optical camera system which is being developed to be installed on KOMPSAT-2 satellite. High resolution image data from MSC system will be transmitted to the ground-station through x-band antenna called APS (Antenna Pointing System). APS is a directional antenna which will point to the receiving antenna at ground station while the satellite is passing over it. The APS needs to be controlled accurately to provide the reliable communication with big RF link margin. The APS is controlled by ATS (Antenna Tracking Software) which is included in the MSC software. ATS uses the closed loop control algorithm which will use TPF (Tracking Parameter File) as an input for antenna position, and will use two resolve readings from APS as a feedback. ATS has been developed and verified using APS QM (Qualification Model) and all the control parameters for ATS have been tested and verified. Various kinds of maximum, nominal and realistic dynamics for the APS movement have been simulated and verified. In this paper, closed loop servo control algorithm and obtained APS position error from the verification test with APS QM will be presented in detail

  • PDF

SETTING OF HPA OUTPUT POWER IN COMS DATS CONSIDERING IMD CHARACTERISTICS

  • Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.204-207
    • /
    • 2006
  • COMS will receive two different meteorological signals in S-Band from IDACS (Image Data Acquisition and Control System) in ground station before transmitting them in L-Band to user station. MODCS (Meteorological Ocean Data Communication Subsystem) in satellite released the value of required PFD (Power Flux Density) to receive two signals. Thus, DATS (Data Acquisition and Transmission Subsystem) needs to send two signals to satellite with a satisfied EIRP. The value of minimum HPA (High Power Amplifier) output power was estimated by subtracting antenna directional gain and path loss between antenna and HPA from the needed EIRP in this paper. Besides the minimum output power of HPA, the maximum output power was also calculated with considering IMD (Inter-Modulation Distortion) characteristics. IMD is always occurred in the output of HPA when LRIT and HRIT are amplified by using single HPA as COMS application. In this paper, the setting of maximum output power was determined when the IMD of modelled HPA was corresponded to the requirement of MODCS.

  • PDF

An Intelligent System for Recognition of Identifiers from Shipping Container Images using Fuzzy Binarization and Enhanced Hybrid Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2004
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. In this paper we propose and evaluate a novel recognition algorithm for container identifiers that effectively overcomes these difficulties and recognizes identifiers from container images captured in various environments. The proposed algorithm, first, extracts the area containing only the identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper. Then a contour tracking method is applied to the binarized area in order to extract the container identifiers which are the target for recognition. In this paper we also propose and apply a novel ART2-based hybrid network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm performs better for extraction and recognition of container identifiers compared to conventional algorithms.