• Title/Summary/Keyword: Directional Coupler

Search Result 239, Processing Time 0.022 seconds

Fabrication of electro-optical modulator of directional coupler $2{\times}2$ ($2{\times}2$ 방향성 결합형 광 변조기의 제작 연구)

  • Kang, Ki-Sung;Chae, Kee-Byung;Soh, Dae-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.113-116
    • /
    • 1993
  • A guided - wave electro - optical modulatored directional coupler $2{\times}2$ was fabricated on X-cut $LiNbO_3$ by proton exchange wi th self-aligned method. The Electode pattern was formed by the four extra gap electrode separtion within self-aligned electrode mask. Initial cross over state turned that by controlling the anneal ing process and self-aligned electrodes are used in fabricating the electro-optical modulatored directional coupler $2{\times}2$. The modulatored directional coupler $2{\times}2$ has very good figures of merits: the measured crosstalk was -28.2 dB and the modulating valtage of 3.2[V].

  • PDF

Lumped Element MMIC Direction Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 MMIC 집중 소자형 방향성 결합기)

  • Kang Myung-Soo;Park Jun-Seok;Lee Jae-Hak;Kim Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.577-582
    • /
    • 2004
  • In this paper, lumped equivalent circuits for a conventional parallel directional coupler are proposed. This equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of parallel-coupled line. By using the derived design formula, we have designed the 3dB and 4.7dB MMIC couplers at the center frequency of 3.4GHz and 5.6GHz respectively. Measurements for the designed MMIC directional couplers show at 4dB and 5.2dB-coupling value at the center frequency of 3.4GHz and 5.6GHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper

The study on the development of directional coupler of DCS band using a Low Temperature Co-fire dielectric material (저온 소성 유전체 재료를 이용한 DCS 대역 방향성 결합기 개발에 관한 연구)

  • Lee, J.K.;Yoo, Joshua;Kim, Erick;Lee, W.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.317-320
    • /
    • 2003
  • Nowadays, the study on the ceramic components and modules used in telecommunication system is being performed. Coupler is a microwave passive component used for power coupling or dividing and directional coupler is designed to be possible optional dividing percentage. In our research, We developed 14dB and 19dB directional couplers of DCS band. The good characteristics, the target insertion loss and high isolation, of couplers is obtained by LTCC processing using a ceramic material.

  • PDF

2.4-GHz Power Amplifier with Power Detector Using Metamaterial-Based Transformer-Type On-Chip Directional Coupler

  • Dang, Trung-Sinh;Tran, Anh-Dung;Lee, Bomson;Yoon, Sang-Woong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.554-557
    • /
    • 2013
  • This letter presents a power amplifier (PA) with an on-chip power detector for 2.4-GHz wireless local area network application. The power detector consists of a clamp circuit, a diode detector, and a coupled line directional coupler. A series inductor for an output matching network in the PA is combined with a through line of the coupler, which reduces the coupling level. Therefore, the coupler employs a metamaterial-based transformer configuration to increase coupling. The amount of coupling is increased by 2.5 dB in the 1:1 symmetric transformer structure and by 4.5 dB from two metamaterial units along the coupled line.

A Study on the Design of Directional Coupler with high Directivity (높은 지향성을 갖는 방향성 결합기 설계에 관한 연구)

  • 지일구;정정화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.921-928
    • /
    • 2003
  • This paper propose a new design of directional couplers with the high directivity. The directional coupler is used to check and verify the power, frequency and antenna reflection of a signal at transmission station for the mobile communications. The performance index of the directional coupler is to which the coupling is strong to reduce the effect on the transmitted power and the directivity is high to suppress the interference of the reflected signals and reduce the nor in the communication. Then, the architectures to gain the high directivity and the studies to get the strong coupling have been proposed However, the conventional architectures lot the high directivity and strong coupling have the directivity by about 20㏈ and the difficulty to achieve the higher directivity than 40㏈ suitable for IMT-2000 [1]. This paper proposes an architecture of the directional coupler which is based on the grounding composed of the strip lines and the comparison results with the conventional directional couplers. The comparison results show that the proposed directional coupler has the directivity more than 40 ㏈ and is adequate for the 2.05GHz IMT-2000

Novel Lumped Element Backward Directional Couplers Based on the Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기)

  • 박준석;송택영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1036-1043
    • /
    • 2003
  • In this paper, novel lumped equivalent circuits for a conventional parallel directional coupler are proposed. This novel equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3 dB and 10 dB lumped element directional couplers at the center frequency of 100 MHz and 2 GHz, respectively a chip type directional coupler has been designed with multilayer configurations by employing commercial EM simulator. Designed chip-type directional couplers have a 3 dB-coupling value at the center frequency of 2 GHz and fabricated lumped directional coupler on fr4 organic substrate has a 3 dB, 10 dB-coupling values at the center frequency of 100 MHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper. Furthermore, in order to adapt to multi-layer process such as Low Temperature Cofired Ceramic (LTCC), chip-type lumped element couplers have been designed by using this method.

Design of Tight Coupled 1/4 Wavelength Backward-Wave Directional Coupler using Coupled Lines with Finite Metallization Thickness (도체 두께를 가진 결합선로를 이용하여 강한 결합특성을 갖는 1/4파장 역방향 방향성 결합기의 설계)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1004-1010
    • /
    • 2003
  • In this paper, the 1/4 wavelength backward-wave directional coupler using coupled lines with finite metallization thickness is described. A mode-matching method, simple and fast approach to the quasi-static analysis, has been used to analyse this structure. The numerical results show that it is possible to overcome the disadvantages of weakly coupling, low directivity, and narrow strip distance non-realizable in the case of 1/4 wavelength backward-wave directional coupler with zero thickness conductor. It is also revealed that thicker metallization causes longer coupler length in the case of backward-wave symmetrical parallel coupled line directional coupler. The finite metallization thickness can be a new parameter for tight coupling in the design of backward-wave directional couplers, which enables us to design more accurate properties of monolithic microwave integrated circuits.

Ultracompact Polarization-Insensitive Directional Coupler based on Double Sandwiched Rib-Type Waveguide (이중 샌드위치 Rib-형 도파로에 기초한 초소형 편광 무의존성 방향성 결합기)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.171-176
    • /
    • 2014
  • The polarization characteristics of ultracompact polarization-insensitive directional coupler (PIDC) based on double sandwiched rib-type waveguide are explored in detail by using longitudinal modal transmission-line theory (L-MTLT). To obtain the polarization-insensitive condition of ultracompact directional coupler, the coupling length and coupling efficiency as functions of the refractive index and thickness of sandwiched rib-type waveguide are analyzed for quasi-TE and quasi-TM modes. The numerical results show that the ultracompact polarization-insensitive coupler with hundreds of micrometer scales is realized by properly choosing structural and material parameters of double sandwiched layers. Furthermore, the influence of fundamental mode profile, which is distributed in lateral waveguide of coupler, on the coupler performance has been investigated.

Measurement and Analysis of Loss in Optical Directional Couplers

  • Leepila, R.;Jangsilp, R.;Noppanakeepong, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.484-487
    • /
    • 2004
  • Symmetric directional couplers are widely used in interferometers, switches, and various signal processing devices. Recently, several optical couplers using multimode fibers were reported, but these suffer from inefficient coupling of light into a branching fiber and/or low directivity. This paper presents the measurement and analysis of loss in the connection of optical fibers via the optical directional couplers. The functionality of the device is based on the principle that is symmetrical, the power in excited mode can be unambiguously directed into one of the output channel by varying and of its parameters. In this experiment, we measure the power of loss in the optical directional coupler at various radius of curvature. Before the measurement of loss in x-coupler, we polish the contact of the fiber surface in order that light can penetrate through another port. The results show that, when the radius of curvature is increased, the loss power is decreased and also approaches of the straight line case.

  • PDF

A study on fabrication and characterization of directional coupling optical modulator (방향성 결합형 광 변조기 제작 및 특성연구)

  • 강기성;소대화
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.443-450
    • /
    • 1995
  • A directional coupler which on the X-cut $LiNbO_3$ substrate is fabricated by using proton exchange method and self-aligned method. After proton exchange process, the waveguide is formed by annealing process. The relation ship between refractive index change of waveguide and maximum output was studied along with the annealing time. A self-aligned method was used to simplify the fabrication process of the waveguide and to maximize the efficiency of electric field. The on-off state of modulator has been observered with the switching of the directional coupler by the electric field effect and also the switching voltage of the directional coupler has been measured with 8.0 [V].

  • PDF