• Title/Summary/Keyword: Directional

Search Result 4,058, Processing Time 0.029 seconds

Dynamic Responses of Multi-Span Simply Supported Bridges under Bi-Directional Seismic Excitations (2방향 지진하중을 받는 다경간 단순교의 동적거동분석)

  • Lee, Sang-Woo;Kim, Sang-Hyo;Mha, Ho-Seong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.21-32
    • /
    • 2004
  • A Seismic analysis procedure of bi-directional brideg motions is developed by using mechanical bridge model. A three-dimensional mechanical model can consider major phenomena under bi-directional seismic excitations, such as nonlinear pier motion under biaxial bending, pounding and bearing damage due to the rotaion of the superstructure, etc. The analyses utilizing the uni-directional and the bi-directional bridge model for the 3-span simply supported bridge are then performed. The seismic responses in two cases are examined and compared by investigating the relative displacements of each superstructure to both ground and adjacent superstructures and the restoring forces of RC pier. The analysis using either the uni-directional model or bi-directional model is acceptable for estimating the displacement responses of a bridge, but the bi-directional analysis is found to give more conservative results for resisting forces of RC piers. To make general conclusions, therefore, the analysis using the bi-directional bridge model should be performed in evaluating the seismic safety of bridges.

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

An Enhanced WLAN MAC Protocol for Directional Broadcast (지향성 브로드캐스트를 위한 무선 LAN MAC 프로토콜)

  • Cha, Woo-Suk;Cho, Gi-Hwan
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.16-27
    • /
    • 2006
  • The wireless transmission medium inherently broadcasts a signal to all neighbor nodes in the transmission range. Existing asynchronous MAC protocols do not provide a concrete solution for reliable broadcast in link layer. This mainly comes from that an omni-directional broadcasting causes to reduce the network performance due to the explosive collisions and contentions. This paper proposes a reliable broadcast protocol in link taller based on directional antennas, named MDB(MAC protocol for Directional Broadcasting). This protocol makes use of DAST(Directional Antennas Statement Table) information and D-MACA(Directional Multiple Access and Collision Avoidance) scheme through 4-way handshake to resolve the many collision problem wit]1 omni-directional antenna. To analyze its performance, MDB protocol is compared with IEEE 802.11 DCF protocol [9] and the protocol 2 of reference [3], in terms of the success rate of broadcast and the collision rate. As a result of performance analysis through simulation, it was confirmed that the collision rate of the MDB protocol is lower than those of IEEE 802.11 and the protocol 2 of reference [3], and that the completion rate of broadcast of MDB protocol is higher than those of IEEE 802.11 and the protocol 2 of reference [3].

A Study on the Design of Directional Coupler with high Directivity (높은 지향성을 갖는 방향성 결합기 설계에 관한 연구)

  • 지일구;정정화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.921-928
    • /
    • 2003
  • This paper propose a new design of directional couplers with the high directivity. The directional coupler is used to check and verify the power, frequency and antenna reflection of a signal at transmission station for the mobile communications. The performance index of the directional coupler is to which the coupling is strong to reduce the effect on the transmitted power and the directivity is high to suppress the interference of the reflected signals and reduce the nor in the communication. Then, the architectures to gain the high directivity and the studies to get the strong coupling have been proposed However, the conventional architectures lot the high directivity and strong coupling have the directivity by about 20㏈ and the difficulty to achieve the higher directivity than 40㏈ suitable for IMT-2000 [1]. This paper proposes an architecture of the directional coupler which is based on the grounding composed of the strip lines and the comparison results with the conventional directional couplers. The comparison results show that the proposed directional coupler has the directivity more than 40 ㏈ and is adequate for the 2.05GHz IMT-2000

Novel Lumped Element Backward Directional Couplers Based on the Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기)

  • 박준석;송택영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1036-1043
    • /
    • 2003
  • In this paper, novel lumped equivalent circuits for a conventional parallel directional coupler are proposed. This novel equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3 dB and 10 dB lumped element directional couplers at the center frequency of 100 MHz and 2 GHz, respectively a chip type directional coupler has been designed with multilayer configurations by employing commercial EM simulator. Designed chip-type directional couplers have a 3 dB-coupling value at the center frequency of 2 GHz and fabricated lumped directional coupler on fr4 organic substrate has a 3 dB, 10 dB-coupling values at the center frequency of 100 MHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper. Furthermore, in order to adapt to multi-layer process such as Low Temperature Cofired Ceramic (LTCC), chip-type lumped element couplers have been designed by using this method.

An Experimental Study on Shear Strengthening Effect of I-girder using Externally Bonded CFRP Strips (외부 부착 탄소섬유를 사용한 I형 보의 전단 보강 효과 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • Researches on strengthening and rehabilitation methods are being widely conducted due to the deterioration of existing concrete structures. Use of externally bonded Carbon Fiber Reinforced Polymers (CFRP) strips for the rehabilitation is a cost-effective and time-saving method. Generally, the CFRP layout for the shear strengthening was a uni-directional layout. Many researches have focused on the variables of the uni-directional CFRP layout such as the amount of material, angle, and spacing. Pilot tests indicated that the effective confinement of the concrete member can be provided with the bi-directional CFRP layout than the uni-directional layout. Therefore, the test was carried out after the uni- and bi-directional strengthening work using the same amount of CFRP material. CFRP anchors were installed to prevent unexpected premature CFRP delamination failure before reaching CFRP fracture strain. The effectiveness of the CFRP anchor and bi-directional CFRP layout for shear strengthening was verified based on the principal tensile strain contours.

A Study on the Wave Generating Characteristics of the Multi-directional Irregular Wave Basin (다방향불규칙파 조파수조의 조파특성에 관한 연구)

  • SOHN Byung-Kyu;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.705-712
    • /
    • 2001
  • It is of great importance to represent the directional ocean waves in a laboratory basin for hydraulic model tests. The directional ocean waves can be expressed as a linear superposition of a large number of component waves with different frequencies and propagating directions. The aim of the study is to check the wave generating characteristics by serpent-type wave generating system in PKNU (Pukyong National University) which is composed of 10 piston-type wave generators. In the experiment, spatial variation of irregular wave heights and propagating angles are measured in the multi-directional wave maker basin. Target wave directional spectrum is reproduced in the area of multi-directional wave maker basin. The directional spreading of the generated waves varied spacially in the basin. They differed from target spectrum as the measurement point becomes far from the center line normal to the generator face, The effective generation area where that target can be reproduced is limited to the triangular area attached the generator face. According to the results, it is emphasized that the effective experiment area in the basin considered wave generator characteristics should be determined in consideration of experimental conditions including structural shapes, water depth, wave directionality etc.

  • PDF

Directional Interpolation of Lost Block Using Difference of DC values and Similarity of AC Coefficients (DC값 차이와 AC계수 유사성을 이용한 방향성 블록 보간)

  • Lee Hong Yub;Eom Il Kyu;Kim Yoo Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.465-474
    • /
    • 2005
  • In this paper, a directional reconstruction of lost block in image over noisy channel is presented. DCT coefficients or pixel values in the lost blocks are recovered by using the linear interpolation with available neighboring blocks that are adaptively selected by the directional measure that are composed of the DDC (Difference of DC opposite blocks)and SAC(Similarity of AC opposite blocks) between opposite blocks around lost blocks. The proposed directional recovery method is effective for the strong edge and texture regions because we do not make use of the fixed 4-neighboring blocks but exploit the varying neighboring blocks adaptively by the directional information in the local image. In this paper, we describe the novel directional measure(CDS: Combination of DDC and SAC) composed of the DDC and the SAC and select the usable block to recover the lost block with the directional measure. The proposed method shows about 0.6dB PSNR improvement in average compared to the conventional methods.

An Efficient Contact Angle Computation using MADD Edge Detection (적응성 방향 미분의 에지 검출에 의한 효율적인 접촉각 연산)

  • Yang, Myung-Sup;Lee, Jong-Gu;Kim, Eun-Mi;Pahk, Cherl-Soo
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we try to improve the accuracy of automatic measurement for analysis equipment by detecting efficiently the edge of a waterdrop with transparency. In order to detect the edge of a waterdrop with transparency, we use an edge detecting technique, MADD (Modified Adaptive Directional Derivative), which can identify the ramp edges with various widths as the perfectly sharp edges and respond effectively regardless of enlarging or reducing the image. The proposed edge detecting technique by means of perfect sharpening of ramp edges employs the modified adaptive directional derivatives instead of the usual local differential operators in order to detect the edges of image. The modified adaptive directional derivatives are defined by introducing the perfect sharpening map into the adaptive directional derivatives. Finally we apply the proposed method to contact angle arithmetic and show the effiency and validity of the proposed method.

  • PDF

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.