• Title/Summary/Keyword: Direction finding antenna

Search Result 67, Processing Time 0.022 seconds

Analysis of DOA Estimation and Adaptive Beam-forming of MIMO between Linear-circular Array Antennas (선형-원형배열 안테나에 따른 MIMO의 DOA 추정과 적응 빔성형 분석)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2777-2784
    • /
    • 2011
  • In this paper, DOA(direction of arrival) of multiple incident signals received from linear array antenna and circular array antenna, which is based on nonparametric estimation algorithm, and adaptive beam-forming algorithm are studied and analyzed. In nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Especially, the discrimination ability of DOA and the adaptive beam-forming ability according to antenna array methods and the number of array elements are compared and considered.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Design and Implementation of Fire distress Detection and Rescue user Terminal (소방조난 탐지구조 단말장치 설계 및 제작)

  • Kim, Kun-Joong;Na, Sang-Guen;Kim, Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.557-559
    • /
    • 2012
  • The fire distress detection and rescue user terminal, which rescue the survivor by using the direction finding of distress place and sensing techniques, was design and implemented. The user terminal provides the rescue function in the place of evil surroundings that can not be available the communication facilities. The rescue user terminal provides the portable configuration, which consists of a RF board with radio frequency of 2.45 GHz and inner antenna, and a control board. The inner antenna with $60^{\circ}$ or $120^{\circ}$ directivity, which use the triangulation, detects the rescue signal from survivor. The rescue was managed by allotment of user ID and can use the bidirectional audio channel using radio frequency of 5.8 GHz.

  • PDF

RFID Tag Detection on a Water Content Using a Back-propagation Learning Machine

  • Jo, Min-Ho;Lim, Chang-Gyoon;Zimmers, Emory W.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.1 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • RFID tag is detected by an RFID antenna and information is read from the tag detected, by an RFID reader. RFID tag detection by an RFID reader is very important at the deployment stage. Tag detection is influenced by factors such as tag direction on a target object, speed of a conveyer moving the object, and the contents of an object. The water content of the object absorbs radio waves at high frequencies, typically approximately 900 MHz, resulting in unstable tag signal power. Currently, finding the best conditions for factors influencing the tag detection requires very time consuming work at deployment. Thus, a quick and simple RFID tag detection scheme is needed to improve the current time consuming trial-and-error experimental method. This paper proposes a back-propagation learning-based RFID tag detection prediction scheme, which is intelligent and has the advantages of ease of use and time/cost savings. The results of simulation with the proposed scheme demonstrate a high prediction accuracy for tag detection on a water content, which is comparable with the current method in terms of time/cost savings.

An analysis of the effectiveness for an anti-ARM technique using decoy antennas (디코이 안테나를 이용한 ARM 방어 기술의 효과도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.491-496
    • /
    • 2010
  • This paper describes an analysis of the effectiveness for an anti-ARM technique to protect a radar system. We investigate the optimum deployment of decoy antennas which are widely using for anti-ARM and the electromagnetic field at the ARM receiver. To verify the effect of decoy antennas, we analyze the field intensity and phase at the receiver and develop a numerical simulation program using Matlab. We conduct an analysis of ARM attack in case of using multiple decoy antennas and these results can be used to decide the optimum positions of the decoys for anti-ARM.

Application of Borehole Radar to Tunnel Detection (시추공 레이다 탐사에 의한 지하 터널 탐지 적용성 연구)

  • Cho, Seong-Jun;Kim, Jung-Ho;Kim, Chang-Ryol;Son, Jeong-Sul;Sung, Nak-Hun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.279-290
    • /
    • 2006
  • The borehole radar methods used to tunnel detection are mainly classified into borehole radar reflection, directional antenna, crosshole scanning, and radar tomography methods. In this study, we have investigated the feasibility and limitation of each method to tunnel detection through case studies. In the borehole radar reflection data, there were much more clear diffraction signals of the upper wings than lower wings of the hyperbolas reflected from the tunnel, and their upper and lower wings were spreaded out to more than 10m higher and lower traces from the peaks of the hyperbolas. As the ratio of borehole diameter to antenna length increases, the ringing gets stronger on the data due to the increase in the impedance mismatching between antennas and water in the boreholes. It is also found that the reflection signals from the tunnel could be enhanced using the optimal offset distance between transmitter and receiver antennas. Nevertheless, the borehole radar reflection data could not provide directional information of the reflectors in the subsurface. Direction finding antenna system had a advantage to take a three dimensional location of a tunnel with only one borehole survey even though the cost is still very high and it required very high expertise. The data from crosshole scanning could be a good indicator for tunnel detection and it could give more reliable result when the borehole radar reflection survey is carried out together. The images of the subsurface also can be reconstructed using travel time tomography which could provide the physical property of the medium and would be effective for imaging the underground structure such as tunnels. Based on the results described above, we suggest a cost-effective field procedure for detection of a tunnel using borehole radar techniques; borehole radar reflection survey using dipole antenna can firstly be applied to pick up anomalous regions within the borehole, and crosshole scanning or reflection survey using directional antenna can then be applied only to the anomalous regions to detect the tunnel.

DOA Estimation of Multiple Signal and Adaptive Beam-forming for Mobile Communication Environments (이동통신 환경에서 다중신호의 DOA 추정과 적응 빔성형)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.34-42
    • /
    • 2010
  • The DOA(direction of arrival), which is based on parametric and nonparametric estimation algorithm, and adaptive beamforming algorithm for mobile communication environments are researched and analyzed. In parametric estimation algorithm, eigenvalues of the signal component and the noise component are obtained from correlation matrix of received signal by array antenna and power spectrum of the received signal is discriminated from them. Otherwise, in nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Therefore, the improved directional estimation algorithm with regularizing sparsity constraints offers super-resolution and noise suppression compared to other algorithms.