• Title/Summary/Keyword: Direct-runoff

Search Result 174, Processing Time 0.026 seconds

Evaluation of Pollution Loads Removal Efficiency of Vegetation Buffer Strips Using a Distributed Watershed Model (분포형 유역모델을 이용한 식생여과대의 오염부하 저감효과 분석)

  • Park, Min-Hye;Cho, Hong-Lae;Koo, Bohn Kyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.369-383
    • /
    • 2016
  • A distributed watershed model CAMEL(Chemicals, Agricultural Management and Erosion Losses) was applied to a part of grazing grassland and vegetation buffer strip(VBS) located in Daegwanryeong, Korea. A set of scenario analyses was carried out for grassland and VBS with various combinations of VBS widths, soil textures and ground surface slopes. The simulation results indicate that annual direct runoff decreases with wider VBS and the removal efficiency of pollutants generally decrease with steeper slopes. The removal efficiency of sediment is not significantly different with VBS widths. For gentle and medium slopes($10^{\circ}$, $20^{\circ}$), the removal efficiency of TOC and TN is not significantly different with VBS widths. As for a steep slope($30^{\circ}$), however, the removal efficiency of TOC and TN increases with narrower VBS. The removal efficiency of TP is generally high except for medium and steep slope of sandy loam where the removal efficiency of TP increases with wider VBS. This result of TP is contrary to the results of TOC and TN due to the adsorption characteristics of phosphorus associated with fine sediment particles. It is expected that CAMEL can be used for evaluating the effectiveness of VBS to reduce non-point source pollution discharges.

Enhancement of Coupling between Soil Water and Groundwater in Integrated SWAT-MODFLOW Model (SWAT-MODFLOW 결합모형의 토양수-지하수 연결성 개선)

  • Kim, Nam-Won;Lee, Jeong-Woo;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.9-19
    • /
    • 2009
  • This study presents the effects of temporally varied groundwater table on hydrological components such as surface runoff, evapotranspiration, and soil water content. To this end, the SWAT-MODFLOW model in which the groundwater module of SWAT is replaced with MODFLOW model has been used with a modification to enhance the coupling between the water content in soil profile and the groundwater in shallow aquifer. The variable soil layer construction technique (VSLT) is developed in the present work to represent the direct interaction of soil water and groundwater more realistically, and then the VSLT is incorporated into SWAT-MODFLOW model. In VSLT, when the simulated groundwater table rises within the soil zone, the soil layers below the water table is regarded as a portion of the shallow aquifer, so that those layers are excluded from the initially defined soil zone and are governed by the MODFLOW. From the simulation tests for the Musim river basin, the improved SWAT-MODFLOW model with VSLT is found to correctly evaluate the spatial distributions of overland flow, soil moisture, evapotranspiration according to the groundwater table variation.

Flood Inflow Estimation at Large Multipurpose Dam using Distributed Model with Measured Flow Boundary Condition at Direct Upstream Channels (직상류 계측유량경계조건과 분포형모델을 이용한 대규모 다목적댐 홍수유입량 산정)

  • Hong, Sug-Hyeon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1039-1049
    • /
    • 2015
  • The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.

Seasonal Variations of Water Quality within the Waste Impoundments of Geopung Mine (거풍 폐광산 폐기물 적치장 지하수 및 침출수 수질의 시기별 변화)

  • Ahn, Joo-Sung;Yim, Gil-Jae;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • In this study, water quality variation in borehole groundwaters and surface leachate waters were investigated on a seasonal sampling and remote monitoring basis within the waste impoundments at the Geopung mine site where previous rehabilitation measures were unsuccessful to prevent acidic drainage. All groundwaters were typical acidic drainage with acidic pH (3.3${\sim}$4.6) and high TDS (338${\sim}$3330 mg/L) values during the dry season, but increases in metal contents (TDS 414${\sim}$4890 mg/L) and decrease of pH (2.7${\sim}$3.6) were observed during the rainy season. Surface leachate waters showed a similar pattern in water quality variation. Surface runoff waters during rain events had acidic pH (3.0${\sim}$3.4) through direct reactions with waste rocks. Good correlations were found between major and trace elements measured in water samples, but no significant seasonal variation in chemical compositions was shown except relative changes in contents. It can be suggested that dissolution of soluble secondary salts caused by flushing of weathered waste rocks and tailings directly influenced the water quality within the waste impoundments. Increases in acid and metal concentrations and their loadings from mine wastes are anticipated in the rainy season. More appropriate cover systems on waste rocks and tailings necessitate consideration of more extreme conditions in the study mine.

Study on Derivation of Fourth-Order GIUH and Revision of Initial State Probability (4차 하천에서의 GIUH의 유도 및 초기확률의 보정에 관한 연구)

  • Ham, Dae-Heon;Joo, Jin-Gul;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.229-239
    • /
    • 2008
  • This study is to derive the fourth-order Geomorphologic Instantaneous Unit Hydrograph (GIUH), driven for only third-order basin, for the application of GIUH to various types of basin. The second, third, and fourth order GIUHs were compared for various topographical conditions. The results showed lower peak runoff and later peak time in GIUH with higher stream order. Initial state probability was estimated from a function of geomorphologic parameters such as area ratio and bifurcation ratio for the application of GIUH. However, initial state probabilities and early parts of the GIUHs have negative values for many basins due to the inherent errors in the parameters. Initial state probability was calculated by area ratio of direct drainage using ArcView GIS 3.2 model to solve the problem. GIUHs were estimated for three basins, Sanganmi, Byeongcheon, and Sangye, using the above suggested method, and the results showed that the method is free of the problem.

A Study on Obtaining Waters to Restore the Water-ecosystem of Deokjin Pond in Jeonju: New Paradigm for Restoration of Urban Reservoirs (전주시 덕진연못의 수생태 복원을 위한 용수확보방안 연구: 도시 저수지 복원의 새로운 패러다임)

  • Choi, Seung-Hyun;Kim, Seok-Hwi;Lee, Jin Won;Kim, Kangjoo;Oh, Chang Whan
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.467-475
    • /
    • 2015
  • The Deokjin Pond is one of the places representing Jeonju City's history but has the poor water quality. The pond has a storage of $88,741m^3$ and a drainage area of $3.77km^2$. It has been maintained only by the groundwater pumped from the upstream wells and the direct rainfalls on the water surface since the old streams replenishing the pond were turned into a part of the sewer system due to indiscreet urbanization. The lack of replenishing water as well as the organic-rich bottom sediment were suggested as two main causes deteriorating the water-ecosystem. In this study, possible measures obtaining waters for restoration of Deokjin Pond ecosystem are discussed. It is estimated that the present pond can be replenished about 32 times a year by the runoff when the drainage system in the watershed is recovered to a state before urbanization. To support this, the drainage system is compared with that of nearby Osong Pond, which shows relatively better water-ecosystem. Even though Osong Pond has a drainage area one-seventh of that of Deokjin Pond, its storage is more than the half of it. It is because its watershed has a near natural drainage system where the rain mostly infiltrates into soil and slowly discharges into the pond. Therefore, it is believed that the low impact development (LID), which is known as a technique restoring the water circulating system to a condition before development, would be helpful in obtaining waters required for Deokjin Pond ecosystem management.

A Study on the Estimation of Effective Precipitation using Detailed Soil Map (정밀토양도를 이용한 유효강우량 산정에 관한 연구)

  • Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.1-15
    • /
    • 2004
  • For the simulation of flow phenomenon that calculate basin outflow, it is required to estimate effective precipitation which contributes to direct runoff. This paper is focused on using detailed soil map which is one of the data required to estimate effective precipitation by SCS CN method. Korean detailed soil map must be reclassified as SCS hydrologic soil group when it is applied to SCS CN method. In this study, Korean detailed soil maps which are reclassified as SCS hydrologic soil group by the methods of Her and Jung (1987) and Jung et al. (1995) are applied to flow simulation and the results are analyzed. The study sites are Wichon watershed and Pyungchang river basin which are studied by International Hydrological Program(IHP). HEC-1 and WMS v6.1 are used to simulate flow phenomenon and calculate geographic parameters. The difference of flow analysis results from each soil reclassification method is different from each sites. But the results of flow analysis approximate observed data by using Jung et al. (1995) method more than Her and Jung (1987) method.

  • PDF

Groundwater Flow Modeling in a Riverbank Filtration Area, Deasan-Myeon, Changwon City (창원시 대산면 강변여과수 취수부지 주변의 지하수 유동 모델링)

  • Hamm, Se-Yeong;Cheong, Jae-Yeol;Kim, Hyoung-Su;Hahn, Jeong-Sang;Cha, Yong-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • Riverbank filtration has been used in advanced countries for 150 years. In Korea, investigations for producing riverbank filtrate started in the Han River, Nakdong River, Geum River, Yeongsan River and Seomjin River basins in the 1990s. The lower part of the Nakdong River has a poorer water quality than the upper part of the river. A water balance analysis and groundwater flow modeling were conducted for the riverbanks of the Nakdong River in Daesan-Myeon, Changwon City. The results of the water balance analysis revealed the groundwater infiltration rate into the aquifer to be 245.26 mm/year (19.68% of the average annual precipitation, 1,251.32 mm). Direct runoff accounts for 153.49 mm/year, evapotranspiration is 723.95 mm/year and baseflow is 127.63 mm/year. According to the groundwater flow modeling, 65% of the total inflow to the pumping wells originates from the Nakdong River, 13% originates from the aquifer in the rectilinear direction, and 22% originates from the aquifer in the parallel direction. The particle tracking model shows that a particle moving from the river toward the pumping wells travels 100 m in 50 days and a particle from the aquifer toward the pumping wells travels 100 m in 100 days.

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment (설마천 유역의 혼효림에서 관측된 증발산의 계절변화)

  • Kwon, Hyo-Jung;Lee, Jung-Hoon;Lee, Yeon-Kil;Lee, Jin-Won;Jung, Sung-Won;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration(${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season(May-July), ${\lambda}E$ in this mixed forest averaged about $2.2\;mm\;d^{-1}$, whereas it was on average $0.5\;mm\;d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was $581\;mm\;y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period(i.e., September to December) for 2007 and 2008 was both ${\sim}110$ mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$ in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$ in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.