• Title/Summary/Keyword: Direct-numerical simulation

Search Result 454, Processing Time 0.042 seconds

Direct Numerical Simulation and Second-Order Conditional Moment Closure Modelling of a Turbulent Hydrocarbon Flame (난류 탄화수소화염의 직접수치해석 및 이차 조건모멘트닫힘 모델링)

  • Kim, Seung-Hyun;Huh, Kang Y.;Bilger, Robert W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.35-41
    • /
    • 2001
  • A second-order conditional moment closure(CMC) model is applied to the prediction of local extinction in a turbulent hydrocarbon diffusion flame and compared with direct numerical simulation(DNS) results for the flame. Combustion of a hydrocarbon fuel is described by a simple two-step mechanism. A second-order correction for conditional mean reaction rate terms is made by the assumed pdf method. The results show that the second-order closure is necessary for accurate prediction of intermediate species, while first-order CMC gives good predictions for fuel, oxidant, product and temperature. Conditional variances and covariances are well predicted during an extinction process while they are overpredicted during a reignition process.

  • PDF

Direct numerical simulation of passive scalar in decaying compressible turbulence

  • Li Xinliang;Fu Dexun;Ma Yanwen
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.39-41
    • /
    • 2003
  • n this paper, direct numerical simulation of decaying compressible turbulence with passive scalar is performed by using 7th order upwind difference scheme or 8th order group velocity control scheme. The start Reynolds number (defined by Taylor scale) is 72 and turbulent Mach numbers are 0.2-0.9. The Schmidt numbers of passive scalar are 2-10. The Batchelor k-1 range are found in scalar spectra, and the high wavenumber spectra decays faster with increasing turbulent Mach number. The extend self-similarity (ESS) is found in the passive scalar in compressible turbulence.

  • PDF

Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

Direct Numerical Simulation of Flow Characteristics of the Fluid Laden with Many Particles (입자가 포함된 유체의 유동특성에 대한 직접수치해석)

  • Cho, Sang-Ho;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1327-1334
    • /
    • 2003
  • Flow characteristics of the fluid laden with many particles in the two-dimensional channel are investigated using the Navier-Stokes equations coupled with the equation of motion of particles by direct numerical simulation. A four-step fractional step method with Crank-Nicolson scheme and ALE technique is used for P2P1 mixed finite element method. The motion and distribution of particles in the fluid is virtually described as a result of direct numerical simulation and the increase of viscosity is compared with theoretical equations. The effect of channel height on the relative viscosity and the tubular pinch effect are discussed.

Direct Numerical Simulation of Mass Transfer in Turbulent new Around a Rotating Circular Cylinder ( I ) - At Sc=1670 - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 직접수치모사 ( I ) - 높은 Schmidt 수에 대하여 -)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.837-845
    • /
    • 2005
  • In this paper, an investigation on high-Schmidt number (Sc=1670) mass transfer in turbulent flow around a rotating circular cylinder is carried out by Direct Numerical Simulation. The concentration field is computed for three different values of low Reynolds number, namely 161, 348 and 623 based on the cylinder radius and friction velocity. Statistical study reveals that the thickness of Nernst diffusive layer is very small compared with that of viscous sub-layer in the case of high Sc mass transfer. Strong correlation of concentration field with streamwise and vertical velocity components is observed. However, that is not the case with the spanwise velocity component. Instantaneous concentration visualization reveals that the length scale of concentration fluctuation typically decreases as Reynolds number increases. Statistical correlation between Sherwood number and Reynolds number is consistent with other experiments currently available.

Direct Numerical and Large Eddy Simulations of Transitional Flows around Turbulence Stimulators at Very Low Speeds (초저속 영역에서 난류 촉진기 주위 천이 유동의 직접 수치 및 대형 와 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.265-273
    • /
    • 2018
  • Direct numerical and large eddy simulations of transitional flows around studs installed on flat plate and bulbous bow have been performed to investigate an effectiveness of turbulence stimulators on laminar-to-turbulence transition at a very low speed. The flow velocity was determined to be 0.366m/s corresponding to 4 knots of full-scale ship speed when the objective ship was Kriso container ship. The spatial evolution of skin friction coefficient disclosed that a fully development of turbulence was observed behind the second stud installed on flat plate while a rapid transition from laminar to turbulence gave rise to the fully development of turbulence behind the first stud installed on bulbous bow. A comparison of streamwise mean velocity profiles showed that the viscous sublayer and log-layer were in good agreement with previous results although the friction velocity of Smagrosinsky sub-grid scale model was about 10% larger than that of direct numerical simulation. While the turbulence intensities of bulbous bow was similar to those of flat plate in inner region, larger intensities of turbulence were observed in outer region of bulbous bow than those of flat plate.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Direct Numerical Simulation on the Nonlinear Dynamic Responses among Wave, Structure and Seabed ($\cdot$구조물$\cdot$지반의 비선형 동적응답해석을 위한 직접수치해석기법의 개발)

  • Hur Dong Soo;Kim Chang Hoon;Lee Kwang Ho;Kim Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.86-97
    • /
    • 2005
  • Accurate estimation of the wave-induced pore water pressure in the seabed is key factor in studying the stability of the seabed in the vicinity of coastal structure. Most of the existing numerical models for wave structure seabed interaction have been linked through applying hybrid numerical technique which is analysis method separating the wave field and seabed regime. Therefore, it is necessary to develope a numerical model f3r simulating accurately wave$\cdot$structure$\cdot$ seabed interaction under wave loadings by the single domain approach for wave field and seabed regime together. In this study, direct numerical simulation is newly proposed. In this model, modeled fluid drag has been used to detect the hydraulic properties according to the varied geometrical shape inside the porous media by considering the turbulence resistance as well as laminar resistance. Contrary to hybrid numerical technique, direct numerical simulation avoids the explicit formulation of the boundary conditions at the fluid/porous media interface. A good agreement has been obtained by the comparison between existed experimental results by hydraulic model test and direct numerical simulation results far wave $\cdot$structure$\cdot$seabed interaction. Therefore, the newly proposed numerical model is a powerful tool for estimating the nonlinear dynamic responses among a structure, its seabed foundation and water waves.

The Effects of Typhoon Initialization and Dropwindsonde Data Assimilation on Direct and Indirect Heavy Rainfall Simulation in WRF model

  • Lee, Ji-Woo
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.460-475
    • /
    • 2015
  • A number of heavy rainfall events on the Korean Peninsula are indirectly influenced by tropical cyclones (TCs) when they are located in southeastern China. In this study, a heavy rainfall case in the middle Korean region is selected to examine the influence of typhoon simulation performance on predictability of remote rainfall over Korea as well as direct rainfall over Taiwan. Four different numerical experiments are conducted using Weather Research and Forecasting (WRF) model, toggling on and off two different improvements on typhoon in the model initial condition (IC), which are TC bogussing initialization and dropwindsonde observation data assimilation (DA). The Geophysical Fluid Dynamics Laboratory TC initialization algorithm is implemented to generate the bogused vortex instead of the initial typhoon, while the airborne observation obtained from dropwindsonde is applied by WRF Three-dimensional variational data assimilation. Results show that use of both TC initialization and DA improves predictability of TC track as well as rainfall over Korea and Taiwan. Without any of IC improvement usage, the intensity of TC is underestimated during the simulation. Using TC initialization alone improves simulation of direct rainfall but not of indirect rainfall, while using DA alone has a negative impact on the TC track forecast. This study confirms that the well-suited TC simulation over southeastern China improves remote rainfall predictability over Korea as well as TC direct rainfall over Taiwan.

Drirect Numerical Simulation of Transitional Separated Flows Part II:Secondary Instability (천이박리유동의 직접수치모사 Part II:이차적 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2973-2980
    • /
    • 1996
  • Secondary instability in an obstructed channel is investigated using direct numerical simulation. Flow geometry under consideration is a plane channel with two-dimensional thin obstacles mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. As a basic flow, we consider an unsteady periodic solution which results from Hopf bifurcation. Depending on the Reynolds number, the basic flow becomes unstable to three-dimensional disturbances, which results in a chaotic flow. Numerical results obtained are consistent with experimental findings currently available.