• Title/Summary/Keyword: Direct runoff

Search Result 174, Processing Time 0.02 seconds

Best Management Practices Reducing Soil Loss in the Saprolite Piled Upland in Hongcheon Highland (고령지 석비레 성토 밭의 토양유실 저감을 위한 최적영농관리방안)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Jung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.119-126
    • /
    • 2005
  • Soil erosion at Jawoon-Ri in Hongcheon highland is one of serious problems since saprolite piling on farmland has been typically practiced at 2-3 year's intervals. The objective of the case study was to survey management practices such as tillage, application of saprolite, and cultivating crops and to propose best management practices (BMP) to reduce soil loss in Jawoon-Ri, Hongcheon-Gun. Jawoon-Ri is located in the upper stream of Naerinchun. Upland areas of Jawoon 2 and 4Ri were 206.9 and 142.3 hectare, respectively. Estimation of soil loss in this study was based on USLE (Universal soil loss equation). Annual averaged soil losses were 15.6 MT per hectare in Jawoon-2Ri and 9.0 MT per hectare in Jawoon-4Ri, respectively. This case study tried to find methods to reduce soil erosion below tolerant soil loss level which is $11MT\;ha^{-1}\;yr^{-1}$. Estimated soil losses in more than 40% of uplands in Jawoon-2Ri and 4Ri were higher than tolerant soil loss level. Especially, edge of uplands undergone excessive soil erosion by concentrated runoff water. Therefore consolidation of upland edge was included as one of the proposed Best management practices BMP). The proposed BMP in this area were buffer strips, contour and mulching, diversion drain channel, grassed water-way, detour watet-way and cover crops and so on. Amounts for BMP requirements were 7,680 m for buffer strips, 123 ha (35%) for contour and mulching, 201 ha (57%) for diversion drain channel, 13,880 m for grassed water-way, 3,860 m for detour drainage, 8,365 m for sloping side consolidation and 3,492 ha for cover crops, respectively. Application of BMP are urgently needed in uplands which is direct conjunction with stream.

Characteristics of Water Budget on Throughfall and Stemflow in Pinus densiflora and Quercus acutissima (소나무와 상수리나무림의 임내우 물수지 특성)

  • 이헌호;박재철
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.259-270
    • /
    • 1998
  • This study, as an essential research to develope a mountainous runoff model, was conducted to clarify the hydrologic character and water budget equation of Pinus densiflora and Quercus acutissima. Net rainfall quantity division for two species was investigated at Youngsung experiment forest and Yeungnam University for 30 months(Sep. 1995-Jun. 1998). The results were summarized as follows; 1. The percentages of throughfall and stemflow to gross precipitation are 73.8% and 0.8% in the Pinus densiflora, and 76.9% and 3.8% in the Quercus acutissima, respectively 2. In the Pinus densiflora, regression fomula of stemflow, throughfall, and net rainfall to gross precipitation are S$_{f}$ = 0.01GP-2.05 ($r^2$=0.54) T$_{f}$ = 0.79Gp - 26.04 ($r^2$=0.92), N$_{r}$ = 0.81Gp - 28.09 ($r^2$=0.92). Stemflow and throughfall increased in direct proportion to gross precipitation. 3. In the Quercus acutissima, regression fomula of stemflow, throughfall, and net rainfall to gross precipitation are S$_{f}$ = 0.03Gp + 12.25 ($r^2$=0.74), T$_{f}$ = 0.78Gp + 19.75 ($r^2$=0.96), N$_{r}$ = 0.81Gp + 3199 ($r^2$=0.96), respectively. Comparing with two species, gross precipitation has a much larger effect on the stemflow and throughfall of Quercus acutissima than those of Pinus densiflora. 4. In the analysis of intercorrelation between stemflow and throughfall of each species and crown area(CA), diameter at breast height(DBH), and gross precipitation(Gp), correlation coefficient was higher by following order at each species; Gp>CA>DBH on stemflow of Pinus densinora, Gp>DBH>CA on stemflow of Quercus acutissima, and Gp>CA>DBH on throughfall of Pinus densiflora and Quercus acutissima.ssima.

  • PDF

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Influence of the Asian Monsoon on Seasonal Fluctuations of Water Quality in a Mountainous Stream (산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향)

  • Shin, In-Chul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.54-62
    • /
    • 2005
  • The present study was to determine how seasonal rainfall intensity influences nutrient dynamics, ionic contents, oxygen demands, and suspended solids in a lotic ecosystem. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of rainfall. Dissolved oxygen (DO) had an inverse function of water temperature (r = = = - 0.986, p<0.001). Minimum pH values of<6.5 were observed in the late August when rainfall peaked in the study site, indicating an ionic dilution of stream water by precipitation. Electrical conductivity (EC) was greater during summer than any other seasons, so the overall conductivity values had direct correlation (r = 0.527, p<0.01) with precipitation. Ionic dilution, however, was evident 4 ${\sim}$ 5 days later in short or 1 ${\sim}$ 2 weeks in long after the intense rain, indicating a time-lag phenomenon of conductivity. Daily COD values varied from 0.8 mg $L^{-1}$ to 7.9 mg $L^{-1}$ and their seasonal pattern was similar (r = 0.548, p<0.001) to that of BOD. Total nitrogen (TN) varied little compared to total phosphorus (TP) and was minimum in the base flow of March. In contrast, major input of TP occurred during the period of summer monsoon and this pattern was similar to suspended solids, implying that TP is closely associated (r = 0.890, p<0.01) with suspended inorganic solids. Mass ratios of TN : TP were determined by TP (r= -0.509, p<0.01) rather than TN (r= -0.209, p<0.01). The N : P ratios indicated that phosphorus was a potential primary limiting nutrient for the stream productivity. Overall data suggest that rainfall intensity was considered as a primary key component regulating water chemistry in the stream and maximum variation in water quality was attributed to the largest runoff spate during the summer monsoon.