• 제목/요약/키워드: Direct energy deposition process

검색결과 47건 처리시간 0.027초

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • 김병성;이종운;손기석;최민수;이동진;허근;남인철;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation)

  • 박인수;최종호;이국승;전태열;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Influence of RTA treatments on optical properties of ZnO nanorods synthesized by wet chemical method

  • Shan, Qi;Ko, Y.H.;Lee, H.K.;Yu, J.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.190-190
    • /
    • 2010
  • Zinc oxide is the most attractive material due to the large direct band gap (3.37 eV), excellent chemical and thermal stability, and large exciton binding energy (60 meV). Recently, ZnO nanorods were used as the high efficient antireflection coating layer of solar cells based on silicon (Si). In this reports, we studied the effects of rapid thermal annealing (RTA) treatment on optical properties of ZnO nanorods. For fabrication of ZnO nanorods, there are many methods such as hydrothermal method, sol-gel method, and metal organic chemical vapor deposition method. Among of them, we used the conventional wet chemical method which is simple and low temperature growth. In order to synthesize the ZnO nanorods, the ZnO films were deposited on Si substrate by RF magnetron sputtering at room temperature and the samples were dipped to aqua solution containing the zinc nitrate and hexamethylentetramines (HMT). The synthesis process was achieved in keeping with temperature of $90-95^{\circ}C$ and under constant stirring. The morphology of ZnO nanorods on glass and Si was characterized by scanning electron microscopy. For the analysis of antireflection performance, the reflectance and transmittance were measured by spectrophotometer. And for analyzing the effects of RTA treatment on ZnO nanorods, crystalline properties were investigated by X-ray diffraction measurements and optical properties was estimated by photoluminescence spectra.

  • PDF

PBF와 DED 공정으로 제조된 17-4PH 스테인리스 강의 미세조직 및 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes)

  • 윤종천;이민규;최창영;김동혁;정명식;최용진;김다혜
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.83-88
    • /
    • 2018
  • Additive manufacturing (AM) technologies have attracted wide attention as key technologies for the next industrial revolution. Among AM technologies using various materials, powder bed fusion (PBF) processes and direct energy deposition (DED) are representative of the metal 3-D printing process. Both of these processes have a common feature that the laser is used as a heat source to fabricate the 3-D shape through melting of the metal powder and solidification. However, the material properties of the deposited metals differ when produced by different process conditions and methods. 17-4 precipitation-hardening stainless steel (17-4PH SS) is widely used in the field of aircraft, chemical, and nuclear industries because of its good mechanical properties and excellent corrosion resistance. In this study, we investigated the differences in microstructure and mechanical properties of deposited 17-4PH SS by PBF and DED processes, including the heat treatment effect.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF

저강도 레이저 조사에 의한 가토 피부의 상처 치유에 관한 연구 (The Study on Wound Healing in Rabbit Skins by Low-intensity Laser Irradiation)

  • 김식현;전진석
    • 대한의생명과학회지
    • /
    • 제6권2호
    • /
    • pp.119-129
    • /
    • 2000
  • 피부는 인체의 표면을 보호하는 중요한 기관으로 피부가 손상되었을 경우 상처 재생은 염증기, 상피화기, 수복기의 정상적인 재생 단계를 거치며 치유된다 최근 저강도 레이저의 생물학적 효과로서 상처 재생과의 밀접한 관련성이 알려지고 있다. 본 연구는 저강도 레이저가 상처 재생에 미치는 유의한 효과를 세포 형태학적으로 확인하기 위해 실험적으로 유도한 가토 피부 상처 (2$\times$2 cm)에 12일 동안 5 Hz, 830 nm, 1.6 J/$cm^2$의 자극강도 (10 min/day)로 상처면에 레이저를 적용한 결과, 다음과 같은 곁과를 얻었다. 레이저 조사군의 경우 결합조직의 수복과 상피의 재형성이 대조군과 비교했을 매우 빠르게 진행되는 것으로 관찰되었으며, 특히 섬유아세포의 활성과 육아조직 합성율이 유의하게 증가되는 것으로 확인되었다. 이상의 연구 곁과를 종합해 달 때 유효한 치료강도의 저강도 레이저 자극은 피부의 개방성 창상 및 욕창 등의 상처 치유를 촉진할 수 있는 것으로 사료된다.

  • PDF