• Title/Summary/Keyword: Direct duty-ratio PWM

Search Result 17, Processing Time 0.028 seconds

Control and Operating Characteristics of Three-Phase Matrix Converter with Unity Power Factor by Direct Duty-Ratio Modulation Method (단위 역률을 갖는 직접 시비율 변조방식 3상 매트릭스 컨버터의 제어 및 동작 특성)

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2009
  • This paper investigates operating characteristics of three-phase matrix converter with unity input power factor by direct duty-ratio pulse-width modulation in the case of balanced and unbalanced load. It can be found from the system analysis that (1) The control algorithm for unity power factor is not related to the variables of load sides but the input voltages, (2) With the balanced three-phase load except for the pure reactive load, the unity input power factor can be achieved, (3) In the case of the unbalanced linear load, the equivalent input characteristics of the matrix converter can be seen like the nonlinear resister, (4) When the input frequency and the output frequency have the specific relationship, each input phases have the same sharing of the average power. The feasibility and validity of the analysis were verified by simulation and experimental results.

Design and Simulation of High Efficiency PWM Modulation Method for Three-phase Matrix Converter (3상 매트릭스 컨버터의 고효율 변조방법 설계 및 시뮬레이션)

  • Lim, Hyun-Joo;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • A matrix converter is used for converting AC/AC power directly. In order to generate sinusoidal input/output waveform in matrix converter, it uses nine bidirectional switches and PWM modulation. This paper presents an analytical averaged loss model of matrix converter with DDPWM(direct duty ratio PWM) and proposes a new switching method for reducing switching losses. A Mathematical loss models with average magnitude of voltage/current are classed as conduction and switching loss. The proposed switching pattern is improved with existing DDPWM. To prove improved efficiency with proposed DDPWM, this paper compares losses between suggested switching pattern and conventional switching pattern using mathematical and simulation method. Each loss types are influenced by environmental factors such as temperature, switching frequency, output current and modulation method.

Analysis on Core Loss of Brushless DC Motor Considering Pulse Width Modulation of Inverter

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1914-1920
    • /
    • 2014
  • In this paper, characteristics of blushless direct current (BLDC) motor including core loss are analyzed considering pulse width modulation (PWM) of inverter. Input voltage of BLDC motor due to PWM is calculated considering duty ratio and carrier frequency of inverter in order to control torque or speed of BLDC motor. For the calculation of core loss, the input current with harmonics due to PWM voltage is calculated by using equivalent circuit model of BLDC motor according to switching pattern and carrier frequency. Next, core loss is analyzed by inputting the currents as a source of BLDC motor for FEM. Characteristics including core loss are compared with ones without PWM waveform according to reference speed.

A Study on the Control Method for Torque Ripple Reduction during Phase Commutation (SRM의 상전환 구간 토크리플 저감을 위한 제어기법에 관한 연구)

  • Kim, Tae-Hyoung;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.333-337
    • /
    • 2010
  • In this paper, an advanced torque control scheme of Switched Reluctance Motor(SRM) using modified non-linear logical TSF (Torque Sharing Function) with PWM is presented. In the proposed control scheme, a simple calculation of PWM duty ratio and switching rules from DITC(Direct Instantaneous Torque Control) can reduce the torque ripple with fixed switching frequency. The proposed control scheme is verified by the computer simulations and experimental results.

A Study on the Piezo Injector Control Algorithm for CRDI Diesel Engines (커먼레일 디젤 엔진용 피에조 인젝터 제어에 관한 연구)

  • Oh, Byoung-Gul;Oh, Seung-Suk;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.54-62
    • /
    • 2009
  • The purpose of this study is to develop a piezo injector driver for common-rail direct injection diesel engines. In this research, we analyzed the electrical and mechanical characteristics of the piezo actuator through experiments. Current flow and charging voltage of the piezo injector are controlled by the PWM signal of variable duty ratio in order to realize both fast response and low peak current. The optimal switching duty ratio was designed by modeling and analyzing of the piezo driver circuit. In order to avoid resonance and unacceptably long settling time, appropriate frequency range of the PWM signal was derived based on the driver circuit model. The developed injector driver was validated by experiments under various fuel rail pressure, injection duration, and charging voltage.

Advanced Logical Non-Linear Torque Sharing Function for Torque Ripple Reduction of SRM (SRM의 토크리플 저감을 위한 개선된 논리적 비선형 토크분배기법)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.887_888
    • /
    • 2009
  • In this paper, an advanced torque control scheme of Switched Reluctance Motor (SRM) using modified non-linear logical TSF (Torque Sharing Function) based on the DITC (direct instantaneous torque control) with PWM(Pulse Width Modulation). In the proposed control scheme, a simple calculation of PWM duty ratio, switching rules from DITC and non-linear torque sharing function can reduce the torque ripple with fixed switching frequency. The proposed control scheme is verified by the computer simulations and experimental results.

  • PDF

Torque Ripple Reduction Scheme of SRM using Advanced Direct Instantaneous Torque Control Method (개선된 직접순시토크제어기법을 이용한 SRM의 토크리플 저감기법)

  • Ahn, Jin-Woo;Lee, Dong-Hee;Wang, Huijun;Seck, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.135-137
    • /
    • 2007
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is presented. Different from conventional DITC method, proposed method uses one or two switching modes at every sampling time, instead of only one switching mode. The duty ratio of the phase switch is regulated according to the torque error and simple control rules of DITC. Moreover the sampling time of control can be extended, which allows implementation on low cost microcontrollers. The proposed control method is verified by the simulations and experimental results.

  • PDF