• Title/Summary/Keyword: Direct cooling

Search Result 307, Processing Time 0.03 seconds

Analysis of Problems of Food Service Establishments Contributing to Food Poisoning Outbreaks Discovered through the Epidemiological Studies of Some Outbreaks (식중독 발생의 사례 통해 본 집단급식의 문제접 분석)

  • 김종규
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.3
    • /
    • pp.240-253
    • /
    • 1997
  • The main problems contributing to food poisoning outbreaks in institutional settings and a home were reviewed and analyzed through the epidemiological investigations of food poisoning. The major documented factors included improper holding temperatures, inadequate cooking, poor personal hygiene, cross-contamination and contaminated equipment, food from unsafe sources, failure to follow food hygiene policies, and lack of education, training, monitoring and superivision. Usually more than one factor contributed to the development of an outbreak. (1) Use of improper holding temperatures was the single most important factor contributing to food poisoning. They included improper cooling, allowing a laps of time (12 hours or more) between preparing food and eating it, improper hot holding, and inadequate or improper thawing. Food thermometers were not used in most of the instances. (2) In inadequate cooking, the core temperature of food during and after cooking had not been measured, and routine monitoring was limited to recording the temperature of plated meals. Compared with conventional methods of cooking, microwave ovens did not protect against food poisoning as effectively. Centralized food preparation potentially increased the risk of food poisoning outbreaks. (3) Poor personal hygiene both at the individual level (improper handwashing and lack of proper hygienic practices) and at the institutional level (poor general sanitization) increased the risk of transmission. Person to person transmission of enteric pathogens through direct contact and via fomites has been noted in several instances. (4) Obtaining food from unsafe sources was a risk factor in outbreaks of food poisoning. Food risks were high when food was grown or harvested from contaminated areas. Possibilities included contamination in the field, in transport, at the retail site, or at the time it was prepared for serving. (5) Cross-contamination and inadequate cleaning/handling of equipment became potential vehicles of food poisoning. Failure to separate cooked food from raw food was also a risk factor. (6) Failure to follow food hygiene policies also provided opportunities for outbreaks of food poisoning. It included improper hygienic practices during food preparation, neglect of personnel policies (involvement of symptomatic workers in food preparation), poor results on routine inspections, and disregarding the results and recommendations of an inspection. (7) Lack of formal and in-service education, training, monitoring, and supervision of food handlers or supervisors were critical and perhaps neglected elements in occurrences of food poisoning.

  • PDF

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

Time-dependent Evolution of Accretion Disk Mass in a Black Hole Microquasar Candidate A0620-00 (블랙홀 마이크로퀘이사 후보 A0620-00의 강착원반 질량의 시간적 진화)

  • Kim, Soon-Wook
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.579-585
    • /
    • 2008
  • The time-dependent evolution of disk mass for outburst limit cycle in a black hole microquasar is calculated based on the non-linear hydrodynamic model of thermally unstable accretion disk. The physical parameters such as black hole mass, disk size and mass transfer rate are adopted to reproduce the historical 1975 outburst observed in a prototype black hole X-ray nova A0620-00. The time-dependent effect of irradiation from the central hot region to the disk is considered in two ways: direct irradiation and indirect irradiation reflected from hot accretion flow above the disk. The accretion disk thermal instability model can account for the bolometric luminosity appropriate to typical characteristics of system luminosity observed in X-ray transients during the whole cycle of the outburst evolution. The maximum mass of the accretion disk, ${\sim}4.03{\times}10^{24}g$, is achieved at the ignition of an outburst, and the minimum value, ${\sim}8.54{\times}10^{23}g$, is reached during the cooling decay to quiescence. The disk mass varies ${\sim}5$ times during outburst limit cycle.

The Age of the Earth: Reappraisal (지구의 나이: 재평가)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.273-277
    • /
    • 2014
  • This paper presents a brief historical review of various attempts to estimate the age of the Earth, and reappraises the study of Patterson (1956) which revealed for the first time that the age of the Earth is $4550{\pm}70Ma$ by measuring Pb isotope ratios of several meteorites and a marine sediment. The standard model for the planetary formation of early solar system is: formation of solid particles condensed from the cooling of hot nebular gas -> formation of planet-sized bodies by accretion of those solid particles. The Moon is supposed to have formed from the accretion of the relicts produced by the collision of proto-Earth with Mars-sized body. It is not easy to pinpoint the age of the Earth, considering the series of events related to the formation of the Earth. So, I propose that the collision age as that of the Earth, since the present status of the Earth is thought to be the direct product of the collision. According to the previous studies, the collision age can be broadly constrained between the age ($4567.30{\pm}0.16Ma$) of the earliest condensates (CAI, calcium-aluminum rich inclusion) of the nebula gas, i.e., the age of the solar system, and the oldest age ($4,456{\pm}40Ma$) among rocks and minerals of the Earth and the Moon. We need more precise estimation of the collision age, since it is important in estimating time scale for the formation of planet-size body and in revealing thermal evolution of magma oceans of the Earth and the Moon presumably developed right after the collision.

Effect of Soil Temperature on the Emergence - Speed of Rice and Barnyardgrasses under Dry Direct - Seeding Condition (토양온도(土壞溫度)가 벼와 피의 출아속도(出芽速度)에 미치는 영향(影響))

  • Kwon, Y.W.;Kim, D.S.;Park, S.W.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Seeds of rice, cv. Ilpoom, and barnyardgrasses(Echinochloa crus-galli, vars. oryzicola, crux-galli, and praticola) were sown for a characterization of their responses to temperature during emergence under a dry direct-seeded condition. A laboratory-made aluminum block apparatus for emergence-temperature control conferred a linear continuous temperature gradient from 10 to $30^{\circ}C$ to the seeds from cooling to heating ends of the apparatus. The lowest temperature for emergence was $12.3^{\circ}C$ for rice cv. Ilpoom, and $11.0^{\circ}C$ for the three varieties of Echinochloa spp.. Percent emergence of rice increased sharply with an increase in temperature by ca. $20^{\circ}C$, then leveled-off, while those of barnyardgrasses increased almost linearly with temperatures up to $30^{\circ}C$. In rice the time required for emergence after seeding was shortened exponentially with increased temperature while those for barnyardgrasses were shortened almost linearly from 11 to $30^{\circ}C$. The temperature-response characteristic of rice in emergence-speed was almost the same among those for the 1st emergence, emergence by 25, 50, 75%, or average emergence time. At $13^{\circ}C$, $346.7^{\circ}C$ days of accummulated temperature(26.67 days) were required for the 1st emergence in rice while 131.7, 136.0, and $138.7^{\circ}C$ days(10.13, 10.46, and 10.67 days) were required for the 1st emergence in E. spp., vars. crus-galli, praticola, and oryzicola, respectively. Greater cold tolerance and increasingly faster emergence of barnyardgrasses than rice below $20^{\circ}C$ seem to render the barnyardgrasses as much more competitive than rice at lower temperatures.

  • PDF

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.