• 제목/요약/키워드: Direct cooling

검색결과 308건 처리시간 0.024초

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

상온 상태에서 직접 메탄올 연료전지의 특성 연구 (The Study for Characteristic of Direct Methanol Fuel Cell in Ambient Temperature)

  • 윤효진;김정주;김동진
    • 한국산학기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.955-961
    • /
    • 2009
  • 현재 소형 휴대용 배터리의 용량 증가에 따라 배터리 부피가 커지는 문제를 가지고 있다. 이러한 문제를 해결하기 위해 직접 메탄올 연료전지가 대안으로 떠오르고 있다. 본 논문에서는 직접 메탄올 연료전지를 상온 상태에서 자연 대류 방식으로 공기를 공급하고, 메탄올의 농도와 유량의 변화에 대한 특성을 분석하였다. 분석 결과 저 농도의 메탄올에서는 수소 이온의 확산 속도 지연에 따른 분극현상이 발생하였고, 메탄올의 공급량이 높을수록 전지 Cell의 냉각 효과가 발생하여 출력이 감소한다.

직접가압주조한 Al-5%Ni-5%Mg-(Mm)합금의 조직 및 기계적 성질에 미치는 가압력의 영향 (Effect of Pressure on Microstructures and Mechanical Properties in Al-5%Ni-5%Mg-(Mm) Alloy Manufactured by Direct Squeeze Casting)

  • 우기도;정동석;황인오;김석원
    • 한국주조공학회지
    • /
    • 제21권2호
    • /
    • pp.127-134
    • /
    • 2001
  • Misch metal (rare earth element, Ce, La, Nd, Pr) which has large influence on high-temperature stability and toughness was added to the Al-5%Ni-5%Mg alloy, and squeeze casting was used for Al-5%Ni-5%Mg-(Mm) alloys. The effect of applied pressure and misch metal additions on mechanical properties in Al-5%Ni-5%Mg alloy by direct squeeze casting has been investigated. The applied pressure were 0 MPa(gravity casting), 25, 50 and 75 MPa. Squeeze-cast Al-5%Ni-5%Mg-(Mm) alloys had better mechanical properties than those of non-pressurized cast alloys because of the increased cooling rate by the application of pressure during solidification. By the addition of misch metal in Al-5%Ni-5%Mg alloy, better combination of strength and elongation was obtained. The addition of 0.3%Mm in Al-5%Ni-5%Mg alloy improved the heat resistant property due to the formation of fine eutectic phases.

  • PDF

활성 납재를 이용한 질화규소/탄소강 접합 (Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys)

  • 최영민;정병훈;이재도
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

GM냉동기를 이용한 수소액화 시스템의 액화량 예측 (Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator)

  • 박대종;장호명;강병하
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

한일간(韓日間) 논의 공익적(公益的) 기능별(機能別) 가치평가(價値評價) 비교분석(比較分析) (Comparative Analysis of Multi-functional Public Values of Paddy Fields in Korea and Japan)

  • 임재환
    • 농업과학연구
    • /
    • 제26권2호
    • /
    • pp.70-76
    • /
    • 1999
  • Rice farming is not only the most important income resources of Korean farmers but also the roots of Korean traditional culture. Paddy fields have acted as an food supply base but also have contributed to the public multi-functions such as flood control, water conservation, controlling soil erosion, providing recreational and resting spaces, water purification, air cleaning, oxygen supply and air cooling and so on. The public multi-functions of paddy except rice production have not been evaluated before UR negotiation and starting WTO system. Under the drastic changes of rice economic settings as price decrease of rice and downward decrease of farm income, Korean and Japanese farmers might have lost their intention to grow rice in paddy fields without the direct payment system to compensate rice income decrease. To adapt the direct payment system, the total public value of multi-function of paddy should be identified in terms of money. According to the research results, the total value of multi-functional value of paddy in Korea were estimated 21,596thousand won which is higher than rice production value by 2.1 times. On the other hand the total value of Japanese paddy were amounted to 21,390 Yen which is more than that of Korea by 10times outstandingly. Likewise Japanese have evaluated the paddy field very important enterprise from the view point of food security and multi -functions of paddy to their socio-economic life and environmental sustainability in Japan.

  • PDF

포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발 (Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die)

  • 이정민;김병민;강충길;조형호
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구 (An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel)

  • 김현준;이호길;오세두;김신
    • Tribology and Lubricants
    • /
    • 제32권6호
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

LED 조명용 반투명 유리 광확산판에 있어서 성형 및 냉각온도가 유백특성에 미치는 영향 (Effects of forming and cooling temperature on the opaque properties of translucent opal glass for the glass diffuser of LED lighting)

  • 구현우;임태영;김진호;이미재;황종희;신동욱
    • 한국결정성장학회지
    • /
    • 제23권5호
    • /
    • pp.246-254
    • /
    • 2013
  • LED 조명등의 내구성 문제를 개선할 목적으로 광 확산판에 사용되는 폴리카보네이트 소재를 대체하기 위하여 반투명 유백유리를 제조하였다. 유백유리의 유백제로서 인산칼슘을 사용하였고, $1550^{\circ}C$ 전기로에서 2시간 용융하였다. 유백유리는 용융유리가 성형된 후 냉각 열처리 과정에서 상분리 및 유백입자의 성장에 의해 만들어진다. 따라서 성형 및 냉각온도를 상온, $850^{\circ}C$, $1100^{\circ}C$$1200^{\circ}C$ 로 변화시키면서 유백특성의 영향을 확인하였다. 결과적으로 가장 고온인 $1200^{\circ}C$에서 성형 및 냉각을 한 샘플에서 가장 양호한 특성을 갖는 유백유리가 얻어졌다. 이 유리는 82 % 이상의 높은 Haze 값과 10 % 미만의 낮은 평행광 투과도에 의해 직사광 투과에 의한 눈부심이 없이 LED 조명용 광확산판으로서 우수한 광특성을 나타내었다. 또한 열적특성으로서 $6.309{\times}10^{-6}/^{\circ}C$의 열팽창 계수와 $839^{\circ}C$의 연화점을 나타내었다.

유수대류계수에 관한 실험적 연구 (Experimental Study on Coefficient of Flow Convection)

  • 전상은;김국한;김진근;양주경
    • 콘크리트학회논문집
    • /
    • 제15권2호
    • /
    • pp.314-322
    • /
    • 2003
  • 콘크리트 구조물의 수화열 저감 방안으로 사용되는 파이프 쿨링 시스템을 적용할 경우 파이프 관 주변의 내부유동에 의한 열전달이 발생하게 된다. 이와 같은 내부유동에 의한 열전달 효과를 정확히 규명하기 위해서는 유수대류계수를 산정하여야 한다. 파이프 쿨링 효과의 규명에 필요한 유수대류계수의 영향인자로는 냉각수의 층난류 여부, 냉각수의 유동속도, 관의 형상 및 열특성 등이 있다. 본 연구에서는 유수대류계수를 산정하기 위한 실험장치를 개발하였으며, 이를 이용하여 강재 및 PVC 파이프에 대한 실험을 수행하였다. 이들 실험결과를 토대로 관의 내부표면이 매끈한 원형관이며 난류흐름을 갖는 내부유동에 대한 유수대류계수 모델식을 제안하였으며, 제안된 모델식은 냉각수의 유속뿐만 아니라 유동관의 재질 및 형상을 고려할 수 있다. 유수대류계수는 관을 흐르는 냉각수의 대류에 의한 열전달 효과를 나타내는 값으로 관의 열전도율 및 관의 직경과는 비례관계에 있으며, 관의 두께와는 반비례관계를 갖는다. 본 연구에서 개발된 유수대류계수 모델식은 이러한 영향을 잘 반영하고 있으나, 강재 파이프에 대해서만 관의 두께 및 직경에 관한 보정계수를 제시하였다. 제안된 모델식에 의한 유수대류 계수와 실험으로부터 구한 유수대류계수를 비교한 결과, 제안된 모델식이 실험값을 정확히 추정하고 있음을 알 수 있었다.