• 제목/요약/키워드: Direct cooling

검색결과 308건 처리시간 0.024초

에너지 절감형 염색기용 직접냉각수세장치에 대한 연구 (A Study on Direct Cooling and Washing Machine for Energy Saving-Type Dyeing Machine)

  • 한승철;김진호;김제훈;이성규
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.485-491
    • /
    • 2012
  • 최근 국내 섬유산업의 생산량이 증가함에 따라 섬유산업에서 에너지 소비는 계속 증가되고 있는 실정이다. 기존의 염색기는 고온 고압의 특성을 가지고 있기 때문에 염색 후 냉각을 하기 위하여 열교환기를 통한 간접냉각방식을 채택하고 있다. 이러한 간접냉각방식은 물의 소모량이 많으며 작업 시간 또한 오래 걸리는 문제점이 있고 냉각시 염액의 고착으로 인해 냉각 후 환원세정 및 수세를 수차례 하므로 에너지가 많이 소비된다. 따라서 본 논문에서는 고온 고압 액류 염색기의 열교환기에 의한 간접냉각방식을 염색기내에 냉수를 직접 공급하는 직접냉각방식으로 대체하기 위한 장치를 개발하여 기존의 염색기에 적용하여 냉각과 동시에 환원세정공정을 생략하고 수세공정을 단축시키면서 전공정을 마무리함으로써 전체 작업공정을 줄이고 에너지 소비를 절감하는 등의 생산성을 획기적으로 향상시킬 수 있는 직접냉각수세장치를 제안하며, 시제작품을 제작하고, 실제 염색기에 적용하여 기존의 간접 냉각 방식의 염색기와 성능, 자원 및 에너지 절감율을 비교하였다. 또한 시제작품을 적용한 염색기의 염색성 실험을 하였다.

재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석 (Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler)

  • 이재완;이대영;강병하
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.

직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석 (A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process)

  • 김영도;강충길
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process)

  • 박현태;권의표;임익태
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

A Study on Passive Cooling Strategies for Buildings in Hot Humid Region of Nepal

  • Manandhar, Rashmi;Yoon, Jongho
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.53-60
    • /
    • 2015
  • Increase in energy consumption in building is a big concern world over. In Nepal, energy crisis is a big issue but energy demand in buildings is barely even thought about. In the southern part of Nepal, where the weather is mostly hot during the year, cooling in buildings is very important. This is an initial study regarding building design strategies which focuses on cooling energy consumption in the building. It can be seen from the study that simple passive strategies can be applied in building design which can support in decreasing cooling load. Different passive cooling strategies like orientation, building size, thermal mass, window design and two direct cooling strategies have been investigated in this study. Direct cooling strategies like shading and natural cooling helps in passive cooling. Different desing strategies have different impact on the cooling energy requirement and the study shows that thermo physical property of building materials has the maximum effect on the energy consumption of the building. Each design strategy creates and average of 20% decrease in energy consumption, whereas the thermal conductivity can have as much as 10 times more effect on the energy consumption than other design strategies.

착용형 개인 냉방시스템 개발 (Development of the Wearable Personal Cooling System)

  • 장준영
    • 한국산학기술학회논문지
    • /
    • 제13권7호
    • /
    • pp.2872-2877
    • /
    • 2012
  • 본 논문은 더위나 고온의 환경에서 열적스트레스를 줄이기 위한 착용형 개인 냉방시스템 개발에 관한 것이다. 개인 냉방시스템은 냉매압축 냉동사이클로 작동되는 소형 냉동시스템이 적용되었다. 소형 냉동시스템은 이동과 착용이 가능하도록 소형화와 경량화에 맞게 구성되었다. 증발기는 나일론튜브를 사용하여 조끼 내부에 매립하여 열전도에 의해 신체 열을 저감시키는 직접냉각방식이 적용되었다. 착용형 개인 냉방시스템은 냉방능력은 대략 100W이며 주위온도보다 12~$13^{\circ}C$ 정도 낮게 유지되는 성능을 가진다. 착용형 개인 냉방시스템의 무게는 조끼, 케이스, 배터리를 포함하여 약 3kg이다.

DMLS와 NC복합가공기의 실용성 검토 (Analysis on the practicality and manufacture by DMLS and NC Multiple machines)

  • 문영대
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.34-40
    • /
    • 2015
  • In the study, Three-dimensional drawing parts for conformal cooling circuit cavity & core and their 3D Metal parts using DMLS(Direct MetalLaser Sintering) and NC integrated machining center were showned. For conformal cooling circuit cavity and core parts, I discussed its practicality to DMLS multiple machinins process introducing general manufacturing process and comparing with them.

  • PDF

Enhancement of the Critical Heat Flux by Using Heat Spreader

  • Yoon, Young-Sik;Hyup Yang;Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1063-1072
    • /
    • 2003
  • Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat nux of 2 MW/㎡ was successfully removed at the heat source temperature below 78$^{\circ}C$ in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.

급속 열처리 시스템을 위한 물/공기 액적류 충돌 제트의 냉각 특성에 관한 연구 (Cooling Performance of Air/Water Mist Jet Impinging for a Rapid Thermal Annealing System)

  • 이준경
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.68-74
    • /
    • 2015
  • In the present work, a series of numerical calculations have been conducted on the cooling of a hot surface using an air/water mist jet. In some cooling processes, such as in the glass-tempering process, direct contact between the cold water drops and the hot surface should be avoided, because this may cause surface cracks due to the sharp temperature gradients. Thus, the main focus of this study is finding the appropriate operating conditions for maximum cooling without direct contact between the drops and the surface. A series of numerical experiments have been performed, and, at the same time, those results were compared with those of the previous experiments for verification purposes. The effects of droplet impinging velocity, hot plate temperature, and liquid loading ratio for mono-dispersed drops of various sizes were studied in detail.