• Title/Summary/Keyword: Direct Runoff

Search Result 174, Processing Time 0.019 seconds

Calculation of Pollutant Loads and Simulation of Water Quality in Juam Lake Watershed using GIS (GIS를 이용한 주암호 유역의 오염부하량 산정 및 수질모의)

  • Kim, Chul;Kim, Souk-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.87-98
    • /
    • 2002
  • Point & nonpoint source pollutant loads were calculated in Juam lake watershed using GIS, and water quality was simulated using water quality model. Point source pollutant loads were estimated using the unit pollutant loads presented by the Ministry of Environment(MOE, 1998). Nonpoint source pollutant loads were estimated using the value of the direct runoff multiplied by expected mean concentration. The direct runoff was calculated using SCS curve number method. Water quality simulation was conducted using WASP model(2001) developed by U.S. EPA. In order to apply the model, Juam lake watershed was divided into 44 subbasins according to slope, elevation, soil type, landuse and precipitation. Then the model was applied to one subbasin. Simulation results were compared to observed values and the result should good agreement with each other.

  • PDF

A Runoff Model based on the Stream Magnitude (수로망(水路綱)크기를 이용한 유출모형(流出模型))

  • Lee, Won Hwan;Jun, Min Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 1989
  • A runoff model was estabilished for the direct runoff hydrograph at each subareas by obtaining the storage coefficient based on stream magnitudes of geomorphic parameters. For this, the relationship between flowsection and channel distance from the outlet of each subareas was assumed as nonlinear equation, and compared with linear one. The applicability of the runoff model to the real watershed was tested for the Bochung river basin. The results of the analysis show that the model was approved to be used for the prediction of small watershed having no runoff records and a linear equation between flowsection and channel distance from the outlet of each subareas was more similar to the observed data for the upper subarea with a steep slope and small area, on the other hand, nonlinear equation for the lower subarea with mild slope and relatively large area.

  • PDF

Characteristics of Water Quantity and Quality of the Anyangcheon using SWAT Model and Calculation Result of EMC (SWAT 모형과 EMC 산정결과를 이용한 안양천의 수량 및 수질 특성)

  • Chung, Eun-Sung;Lee, Kil Seong;Shin, Mun-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.648-657
    • /
    • 2006
  • Characteristics of water quantity and quality of the Anyangcheon were analyzed through many field measurements and the distributed hydrologic simulation model, Soil and Water Assessment Tool (SWAT). Event mean concentrations (EMCs) and baseflow mean concentrations were calculated from the data and the daily runoff were simulated by SWAT. The runoff was divided into the direct runoff and the baseflow. Using those values and quantity and quality data of release from the wastewater treatment plant (WWPT), unit loads of BOD, COD, SS, $NO_2-N$, $NO_3-N$, $NH_3-N$, and Dis-P were derived. EMCs of BOD and SS were even higher than the baseflow mean concentrations. The total runoff from October to April (7 months) of 2004 was just 13.5%, since the rainfall usually is concentrated in summer season. Futhermore BOD and SS were loaded during the event by 50.9% and 70.9%, respectively and over three quarters of total COD, $NO_2-N$, $NO_3-N$, $NH_3-N$, and Dis-P were flowed into the Anyangcheon during the remaining period. Therefore, the efficiency of WWPT for COD, $NO_2-N$, $NO_3-N$, $NH_3-N$, and Dis-P should be intensified from Oct. to Apr. and the runoff quality management of BOD and SS should be planned during the summer season.

Analysis of Nonpoint source Reduction at Andong Area Considering Changes in CN (CN의 변화에 따른 안동시 물순환 선도도시 조성계획의 비점오염부하 저감효과 분석)

  • Kwon, Heongak;Jung, Kangyoung;Kim, Shin;Shin, Sukho;Ahn, Jungmin;Kim, Gyeonghoon
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • Andong belongs to the Nakdong River Basin, Nakdong River is flowing through the city, including Andong dam and Imha dam. The runoff due to provincial transfer and impervious area has been increasing by urbanization increases and nonpoint source loads. In this study, we evaluate the runoff and nonpoint pollution loads in accordance with the development targeted at selected urban water cycle leading to Andong city. Andong city leading to the water cycle plan to evaluate the directly runoff and BOD, T-N and T-P nonpoint pollutant loads using the CN into account the temporal and spatial changes. Evaluation, direct runoff per year is 10.41 % if the green roof and a water permeable pavement replacement, water cycle parks and streets compositions, City impermeable layer improvements to be business including four kinds of scenario is applied to both the development and the BOD non-point pollutant loads 20.56%, T-N 9.55% and T-P pollution and nonpoint loads was investigated to be reduced 14.29%. Four kinds of low lapse rate of the development scenario of the highest thing urban impervious surface was investigated by improving business development prior year annual direct runoff is 6.25 %, BOD nonpoint pollution loads are 11.84%, T-N nonpoint pollution loads are 4.46 % and T-P was investigated by reducing pollutant loads to be 10.20%.

Analysis of Secular Changes in the Hydrological Characteristics of a Small Forested Watershed using a Baseflow Recession Curve (감수곡선을 이용한 산림소유역 유출특성의 시계열 변화 평가)

  • Lee, Ik-Soo;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.383-391
    • /
    • 2014
  • Long-term changes in the hydrological characteristics of a small forest watershed were examined using a master baseflow recession curve and the measured rainfall-runoff data from the experimental forest watershed in the measured years 2003-2011. The results of the study showed that the recession coefficient of direct runoff was lower than that of baseflow. In small forested watershed, the direct flow was lower than that of large scale watershed, flow due to its shorter period of occurrence. And baseflow was similar to large scale watershed's. A regression equation $y=0.7528e^{-0.022x}$($R^2=0.8938$, range 0.3~0.8 mm) was obtained using the master baseflow recession curve for the study period and the recession coefficient was calculated as K = 0.978. Changes between master baseflow recession curve and runoff showed great association and relevance such as increasing runoff was associated with the gentle slope of master baseflow recession curve and decreasing runoff was associated with the slope of master baseflow recession curve contrary. In the later years of the study period, the slope of the master baseflow recession curve appreciably became more gentle due to increases in baseflow. This suggests that the forested experimental watershed exhibit improved structural functioning of normal flood control and reduced occurrence of water shortage problems.

Changes in Hydrological Characteristics of a Forested Watershed of Mt. Palgong (팔공산 산림소유역의 유출 특성 변화)

  • Jung, Yu-Gyeong;Lee, Ki-Hwan;Choi, Hyung-Tae;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study we quantified the long-term change in discharge against precipitation in a forested watershed and investigated how the growth of forest trees influences these changes. We found a proportional relationship between precipitation and discharge for each year, and discharge decreased gradually with time. Precipitation and discharge were highest in July and August, and the changes in precipitation, discharge, and runoff rate did not always coincide, given that high runoff rate was shown in August and September. The monthly coefficient of variation (CV) for discharge was larger than that for precipitation, and the deviation between precipitation and discharge increased gradually. From 2011 to 2017, the gradient of the trend line for the change of total discharge and direct runoff against precipitation decreased, whereas the gradient of the base flow increased in this same time period. A possible explanation is that the water holding capacity of soil deposits increased as the forest soil of the Palgong Mountain watershed developed and the increase of base flow rose with groundwater level together with that of outflow quantity. The coefficient of flood recession was lower in the period 2011 to 2017 than in 2003 to 2010; thus, the reduction of discharge was mitigated and remained steady as time progressed. We conclude from these results that the discharge of surface runoff decreased as tree growth and base flow increased; however, the water yield function of the forest increased gradually.

Development and Application of a GIS Interface for the Agricultural Nonpoint Source Pollution (AGNPS) Model(II) -Modification of AGNPS Model- (농업비점원오염모형을 위한 GIS 호환모형의 개발 빛 적용(II) -AGNPS모형의 수정-)

  • 김진택;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.53-61
    • /
    • 1997
  • The interface system, GIS-AGNPS was to be validated with field data from six tested small watersheds ranging from 0.7 to 4.7$km^2$ in size which have steep topography and complex landuses. The model validation involved the calibration of input parameters and component modifications, in efforts to develop a model applicable to general uses for identifying and controlling nonpoint source pollution loads from agricultural watersheds. The simulated direct runoff from AGNPS was in good agreement with the field data for the averaged antecedent moisture conditions or AMC- II. The results differed, however, from the observed for AMC- I or III. A simple empirical relationship was proposed to estimate the curve number for AMC- I or m from AMC- II, which was found to result in simulated runoff close to the observed. The peak runoff relationship at AGNPS was also modified to reflect the watershed conditions and tested satisfactorily with the field data. The simulated sediment yields from the watersheds were fair as compared to the observed. Nutrient loads simulated from the model were different from the observed data. It appeared that the model was incapable of adequate depicting nutrient transport processes at paddy field and other landuses of the tested watersheds. Some modifications may be needed for the accurate representing the processes at paddy field.

  • PDF

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

A Study on a Quantitative Method in Estimating Forest Effects for Streamflow Regulation (II) - Mainly Dealing with Application of Coefficient for Slope Roughness - (삼림이수기능(森林理水機能)의 정량적(定量的) 평가방법(平價方法)에 관한 연구(硏究)(II) - 조도계수(粗度係數)의 응용(應用)을 중심(中心)으로 -)

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.337-345
    • /
    • 1992
  • In this research, a kinematic wave model was applied for the runoff analysis, Regulation of streamflow was estimated by the calibration of roughness coefficient as a parameter. The data analyzed were obtained from Ananomiya and Shirasaka experimental basins at Tokyo University Forest in Aichi. Estimation methods and characteristics of roughness coefficient as a evaluation method of hydrological function of forest are summarized as follows ; 1. Roughness coefficient($N_s$) indicates the resistance of hillslope to the flowing water of surface runoff. There exists an hypothesis that resistance of hillslope to flowing water increase with the growth forest and development of the $A_o$ layer. 2. Roughness coefficient($N_s$) was estimated by the parameter when the stream direct runoff was calculated by using the kinematic wave. 3. Secular change of '$N_s$' in ananomiya has a curve which has an upper limit and increases exponentially near the limit. The curve quickly increased from 1935 to 1945 when results of afforestation for erosion control were thought to be effective. On the other hand, slight increase of '$N_s$' in Shirasaka indicates that there was not such a big change in the surface of soil layer. 4. The increase of '$N_s$' was related with decrease of direct runoff and increase of base flow. It was recognized that the rate of direct runoff decreased with the improvement of forest physiognomy and the rate of base flow was increased. But absolute value of water runoff per one storm decreased in chronological order.

  • PDF

Runoff Characteristics of the Oedocheon Watershed in Jeju Island (제주도 외도천유역의 유출특성)

  • Ha, Kyoo-Chul;Moon, Deok-Cheol;Koh, Ki-Won;Park, Ki-Hwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.20-32
    • /
    • 2008
  • Runoff characteristics of the Oedocheon in Jeju island were investigated using the long-term stream stage monitoring data. At the Cheonah valley in the upstream area and Oedocheon downstream, annual runoff occurred 21 and 12 times, respectively, and their average runoff periods were 21 days and 12 days, respectively. Stream stage response time to rainfall was 4 hours, and storm-water transfer from the upstream, Cheonah valley, to the Oedocheon downstream took about 2 hours. The stream discharge measurements had been carried out from Feb. 2004 to Jul. 2005, and showed that normal discharge of the Oedocheon was 0.39 $m^3$/sec in average. Stage-discharge curves were developed to estimate base flow (normal discharge) and (direct) surface runoff. The base flow separations by a numerical filtering technique illustrated that annual surface runoff and base flow accounted respectively for 31.8${\sim}$36.5%, 63.5${\sim}$68.2% of the total stream discharge.