• Title/Summary/Keyword: Direct Numerical Simulation, DNS

Search Result 94, Processing Time 0.019 seconds

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

Analysis of Generating Mechanism of Secondary Flows in Turbulent Open-Channel Flows using DNS Data (DNS 자료를 이용한 개수로에서 이차흐름의 생성메커니즘 분석)

  • Joung, Younghoon;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.139-144
    • /
    • 2006
  • Using DNS data for turbulent flows in an open-channel with sidewalls, the mechanisms by which secondary flows are generated and by which Reynolds shear stresses are created, are demonstrated. Near the sidewall, secondary flows invading towards the sidewall are observed in the regions of both lower and upper corners, while secondary flows ejecting from the sidewall towards the center of the channel are created elsewhere. The distributions of Reynolds shear stresses near the sidewall are analyzed, connecting their productions with coherent structures. A quadrant analysis shows that sweeps are dominant in two corner regions where secondary flows invading towards the sidewall are generated, but that ejections are dominant in the region where secondary flows ejecting towards the center of the channel are created. Also, conditional quadrant analyses reveal that the productions of Reynolds shear stresses and the patterns of secondary flows are determined by the directional tendencies of coherent structures.

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

Suppression of Wake Transition and Occurrence of Lock-on Downstream of a Circular Cylinder in a Perturbed Flow in the A-mode Instability Regime (A-mode 불안정성 영역에서 교란유동장에 놓인 원형실린더 후류의 천이지연과 유동공진의 발생)

  • Kim, Soo-Hyeon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.702-710
    • /
    • 2007
  • Direct numerical simulation (DNS) is performed to investigate suppressed wake transition and occurrence of lock-on in the wake of a circular cylinder disturbed by sinusoidal perturbation at the Reynolds number of 220 (A-mode instability regime). The sinusoidal perturbation, of which the frequency is near twice the natural shedding frequency, is superimposed on the free stream velocity. It is shown that the wake transition behind the circular cylinder can be suppressed due to the perturbation of the free stream velocity. This change causes a jump in the Strouhal number from the value corresponding to A-mode instability regime to the value corresponding to retarded wake transition regime (extrapolated from laminar shedding regime) in the Strouhal-Reynolds number relationship. As a result, vortex shedding frequency is locked on the perturbation frequency depending not on the natural shedding frequency but on the modified shedding frequency.

Secondary Instability in the Wake of a Circular Cylinder (원주 후류에서의 2차적 불안정성)

  • KNAG S. J.;TANAHASHI M.;MIYAUCHI T.;LEE Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.84-90
    • /
    • 2001
  • Secondary instability of flow past a circular cylinder is examined using direct numerical simulation at Reynolds number 220 and 250. The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. In x-y plane, the convection term is applied by the 5th order upwind scheme, and the pressure and viscosity terms are applied by the 4th order central difference. In spanwise, Navier-Stokes equation is distributed using Spectral Method. The critical Reynolds number for this instability is found to be about Re=190. The secondary instability leads re three-dimensionality with a spanwise wavelength about 4 cylinder diameters at onset (A-mode). Results of three-dimensional effect in wake of a circular cylinder are represented with spanwise and streamwise vorticity contours as Reynolds numbers.

  • PDF

DEVELOPMENT OF AN LES METHODOLOGY FOR COMPLEX GEOMETRIES

  • Merzari, Elia;Ninokata, Hisashi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.893-906
    • /
    • 2009
  • The present work presents the development of a Large Eddy Simulation (LES) methodology viable for complex geometries and suitable for the simulation of rod-bundles. The use of LES and Direct Numerical Simulation (DNS) allows for a deeper analysis of the flow field and the use of stochastical tools in order to obtain additional insight into rod-bundle hydrodynamics. Moreover, traditional steady-state CFD simulations fail to accurately predict distributions of velocity and temperature in rod-bundles when the pitch (P) to diameter (D) ratio P/D is smaller than 1.1 for triangular lattices of cylindrical pins. This deficiency is considered to be due to the failure to predict large-scale coherent structures in the region of the gap. The main features of the code include multi-block capability and the use of the fractional step algorithm. As a Sub-Grid-Scale (SGS) model, a Dynamic Smagorinsky model has been used. The code has been tested on plane channel flow and the flow in annular ducts. The results are in excellent agreement with experiments and previous calculations.

2-Dimensional Unsteady Modeling of Spray Flame Formed in a Laminar Counterflow Field - Effects of Equivalence Ratio and Fuel - (층류 대향류장에 형성된 분무화염의 2차원 비정상 모델링 -당량비 및 연료종에 관한 영향-)

  • Hwang, Seung-Min;Chung, Jin-Do;Seo, Byung-Min;Kim, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.933-940
    • /
    • 2009
  • To evaluate characteristics in spray flame, laminar counterflow is investigated on the effects of equivalence ratio and fuel by a two-dimensional DNS (direct numerical simulation). For the gaseous phase, Eulerian mass, momentum, energy, and species conservation equations are solved. For the disperse phase, all individual droplets are calculated by the Lagrangian method without the parcel model. n-Decane ($C_{10}H_{22}$) and n-heptane ($C_7H_{16}$) is used as a liquid spray fuel, and a one-step global reaction is employed for the combustion reaction model. As equivalence ratio increases, the fuel ignites early and the high temperature region spreads wider. The peak value of temperature, however, tends to once increase and then decreases with increasing equivalence ratio. The decrease in the peak value of temperature for the higher equivalence ratio condition is caused by the cooling effect associated with droplet group combustion. Since the evaporation of n-heptane is early, the high temperature region spreads wider than ndecane, but the peak values of temperature for both n-heptane and n-decane is almost same.

Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data (저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

Roles of displacement speed of premixed flame embedded in isotropic turbulent decaying flow (직접수치해법을 이용한 난류 예혼합 화염전파속도 연구)

  • Han, In-Suk;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.177-186
    • /
    • 2006
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensionaldirect numerical simulations (DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

Investigation on the validity of the rule of mixtures (복합재료 혼합법칙의 타당성 검토)

  • 이창성;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.111-117
    • /
    • 1999
  • 섬유강화 복합재료의 섬유와 수지까지 세부적으로 모델링이 가능한 Direct Numerical Simulation을 통해서 Boron/Aluminum 섬유강화 복합재료의 탄성계수들을 구해 보았다. 수치실험에서는 복합재료를 직교이방성 물질로 가정하였고, 특정 체적에 대한 평균치를 이용해서 물성치를 구하였으며, 혼합법칙에 의해서 구한 값 및 대표체적요소(Representative Volume Element)를 사용해서 구한 값들과 비교하였다. 혼합법칙의 경우, 섬유방향 인장계수(E₁)을 제외한 나머지 물성치들에 대해서는 상당한 차이를 나타내며, 이는 혼합법칙 유도과정에서 가정한 기본가정들이 적절하지 않기 때문이라는 것을 수치실험(Numerical Experiment)을 통해 알 수 있었다.

  • PDF