• 제목/요약/키워드: Direct Numerical Simulation, DNS

검색결과 93건 처리시간 0.027초

이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구 (A Study of 3-Dimensional Turbulent Channel Flow using Discrete Wavelet Transform)

  • 김강식;이상환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1813-1818
    • /
    • 2004
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isotropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability distribution function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

  • PDF

난류 채널유동에서 생성된 거대 파열 현상에 관해서 (Large Scale Bursting Event in a Channel Flow)

  • Na, Yang
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1060-1067
    • /
    • 2001
  • A large-scale bursting event has been analyzed in a turbulent channel flow using a data obtained from a direct numerical simulation (DNS). Large-scale, plume-like structures have been frequently observed in many experimental results, but the origin of those structures is far from being fully understood. It is believed that those large scale events occur occasionally but contribute significantly to the generation of Reynolds shear stress in the outer layer. This paper attempts to give detailed examples of those large-scale motions observed in a turbulent channel flow at relatively low Reynolds number.

저 레이놀즈 수 개수로 난류흐름의 직접수치모의: 난류의 비등방성 해석 (Direct Numerical Simulation of Low-Reynolds-Number Turbulent Flows in an Open-Channel: An Analysis of Turbulence Anisotropy)

  • 정영훈;최성욱;최정일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.376-380
    • /
    • 2004
  • 측벽이 존재하는 개수로 난류흐름에 대한 DNS 자료를 이용하여 난류의 비등방성을 해석하였다. 측벽의 2등분선(sidewall bisector)에서 난류강도의 분포를 통해 바닥과 자유수면에서의 비등방성을 분석하고, AIM을 도입하여 흐름장 전반에 걸쳐 세부적인 비등방성 해석을 수행하였다. 측벽의 2등분선에서의 난류강도의 분포를 통해 바닥과 자유수면 근처에서 난류강도가 강한 비등방성을 갖는 것을 볼 수 있었다. 또한 3개의 다른 영역에서 AIM의 도입을 통해 측벽이나 바닥근처에서는 난류의 비등방성이 구형 관수로 흐름과 유사한 것으로 나타났으나, 개수로 난류흐름의 주된 특성이 velocity-dip phenomena가 존재하는 영역에서는 구형 관수로 흐름과는 달리 천이영역이 존재한다는 것을 알 수 있었다.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제10권6호
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

직접수치해법을 이용한 난류 예혼합 화염전파속도 연구 (Roles of Displacement Speed of Premixed Flame Embedded in Isotropic Turbulent Decaying Flow)

  • 한인석;허강열
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.10-19
    • /
    • 2007
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensional direct numerical simulations(DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

직접수치모사를 이용한 난류경계층 내의 거대난류구조 연구 (A Direct Numerical Simulation Study on the very Large-Scale Motion in Turbulent Boundary Layer)

  • 이재화;성형진
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.977-982
    • /
    • 2009
  • Direct numerical simulation (DNS) of a turbulent boundary layer with moderate Reynolds number was performed to scrutinize streamwise-coherence of hairpin packet motions. The Reynolds number based on the momentum thickness (${\theta}_{in}$) and free-stream velocity (U${\infty}$) was varied in the range $Re_{\theta}$=1410${\sim}$2540 which was higher than the previous numerical simulations in the turbulent boundary layer. In order to include the groups of hairpin packets existing in the outer layer, large computational domain was used (more than 50${\delta}_o$, where ${\theta}_o$ is the boundary layer thickness at the inlet in the streamwise domain). Characteristics of packet motions were investigated by using instantaneous flow fields, two-point correlation and conditional average flow fields in xy-plane. The present results showed that a train of hairpin packet motions was propagating coherently along the downstream and these structures induced the very large-scale motions in the turbulent boundary layer.

3 차원 입방형 표면조도가 난류경계층에 미치는 영향 (Turbulent Statistics of the Turbulent Boundary Layer over a Cube-Roughened Wall)

  • 이재화;성형진
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.917-923
    • /
    • 2010
  • 3 차원 표면조도의 영향을 조사하기 위하여 규칙적으로 배열된 3 차원의 입방형 표면조도를 갖는 난류경계층을 직접수치모사하였다. 표면조도는 주 유동방향과 횡 방향으로 각각 8k 과 2k 의 주기를 갖도록 배열되었으며 표면조도의 크기 (k)는 입구 운동량 두께(${\theta}_{in}$)의 1.5 배이다. 주 유동 방향을 따라 공간 발달하는 3 차원 표면조도 위의 난류특성을 2 차원의 막대형표면조도에서의 결과와 비교하였다. 2 차원 표면조도와 마찬가지로 3 차원 표면조도의 경우에도 조도저층 뿐만 아니라 바깥영역에서 표면조도의 영향이 존재하였으며 이러한 결과는 주 유동 방향의 표면조도의 주기와 사각형의 면에 의한 막음현상이 2 차원의 표면조도와 마찬가지로 크게 나타나기 때문인 것으로 판단된다.

DSMC(Direct Simulation Monte Carlo)방법을 이용한 마이크로관 내에서의 2 상유동에 관한 연구 (The Study on the Two-Phase Flow in the Microchannel Using DSMC(Direct Simulation Monte Carlo) Method)

  • 이진호;유동훈;이태홍
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1667-1672
    • /
    • 2003
  • In contrast to the high demand for MEMS devices, microflow analysis is not feasible even for single-phase flow with conventional Navier-Stokes equation because of non-continuum effect when characteristic dimension is comparable with local mean free path. DSMC is one of particle based DNS(Direct Numerical Simulation) methods that uses no continuum assumption. In this paper, gas flow in microchannel is studied using DSMC. Interfacial shear and flow characteristics are observed and compared with the results of gas flow that is in contact with liquid case and solid wall case. The simulation is limited to the case of equilibrium steady state and evaporation/condensation coefficient is assumed to be the same and unity. System temperature remains constant and the interfacial shear appears to be small compared to the result with solid wall. This is because particles evaporated and reflected from the liquid surface form high density layer near the interface with liquid flow.

직접수치모사를 통한 Wavy Channel 내의 난류 유동 구조의 연구 (The study of turbulent flow structures in a wavy channel using direct numerical simulation)

  • 이대성;하만영;윤현식;전호환;전충환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1807-1812
    • /
    • 2004
  • Sinusoidal wavy channel is one of the most commonly used devices in the industry for achieving mixing and heat transfer. Here we report on results obtained from the DNS of flow inside the wavy channel performed using the finite volume technique. As a primary stage to obtain the optimal design for heat transfer and mixing, this study observed the basic flow structures in a wavy channel. The mass flow rate is kept constant with friction Reynolds number of $Re_{\tau}$ = 140 . Time- and space-averaged and instantaneous flow fields are illustrated to observe the flow structures. Although the direct comparison of results between turbulent wavy and flat channel is somehow difficult due to the different flow phenomena derived from different configuration, here the mean streamwise velocity and RMS of velocities at same $Re_{\tau}$ of two different channels are compared. The basic difference between wavy and flat channel flow is the existence of small scale wall vortices along the walls in a wavy channel. These vortices make flow more complex, which will accompany the increase of heat transfer, pressure drop and drag.

  • PDF

난류 파이프 유동 내 물질전달에서의 경계조건 영향 (THE EFFECTS OF WALL BOUNDARY CONDITIONS ON MASS TRANSFER IN TURBULENT PIPE FLOW)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.42-52
    • /
    • 2012
  • Direct Numerical Simulation(DNS) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of wall boundary conditions on the concentration fields at $Re_{\tau}$=180 based on friction velocity and pipe radius. Fully developed turbulent pipe flows for Sc=0.71 are studied with two different wall boundary conditions, namely, constant mass flux and constant wall concentration. The mean concentration profiles and turbulent mass fluxes obtained from the present DNS are in good agreement with the previous numerical results currently available. To investigate the effects of wall boundary condition on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuation, turbulent mass fluxes and higher-order statistics(Skewness and Flatness factor) are compared for the two cases. Furthermore, the budgets of turbulent mass fluxes and concentration variance were computed and analyzed to elucidate the effects of wall boundary conditions on the turbulent mass transfer.