• Title/Summary/Keyword: Direct Emissions

Search Result 353, Processing Time 0.025 seconds

Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear (직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구)

  • 김태혁;이상돈;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

Effect of Boosted Intake Pressure on Stratified Combustion of a Gasoline Direct Injection Engine (가솔린 직접분사 엔진의 흡기과급이 성층화 연소에 미치는 영향)

  • 조남효;박형철;김미로
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2003
  • The effects of pressure charge on combustion stability and emissions have been analyzed using a GDI single cylinder engine. A late injection mode of stratified condition at the air-fuel ratio of 40:1 for 1200∼2400 rpm was tested while the boosted pressure ratio was increased up to 1.5:1. In-cylinder CFD analysis was also performed for better understanding of in-cylinder flow and fuel spray behavior. With a higher boosted pressure ratio the IMEP was increased greatly due to the increased engine load, and the ISFC was improved by more than 10% at all engine speeds. The regime of stable stratified combustion was extended to a higher engine speed, but the spark ignition angle had to be more advanced for stable combustion. The emissions of ISHC and ISNOx did not show a particular trend for the increased engine speed but a general trend of lower ISHC and higher ISNOx for a gasoline engine.

A Study on Manufacturing Aggregation And Carbon Emission Intensity: Application of Spatial Panel Regression (국내 제조업 집적이 탄소 배출 강도에 미치는 영향: 공간패널회귀모형의 적용)

  • Zhen Wu;Hyun-Chung Kim
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This study calculates agglomeration indices of manufacturing specialization and diversification in different regions of South Korea. Two types of agglomeration indices are introduced into the spatial durbin model (SDM) to analyzes the effects of manufacturing agglomeration in Korea on CO2 emission intensity. The subjects of this study are 17 regions of South Korea , and the research period is from 2013 to 2019. This study also uses partial differential to analyze the direct and spillover effect of specialization and diversification agglomeration on CO2 emission intensity. From the perspective of direct effect, the results reveal that specialization agglomeration is an important factor contributing to Korea's CO2 emissions. However, diversification agglomeration has an obvious CO2 emission reduction effect. From the perspective of spillover effect, this study finds that specialization agglomeration in one region can also contribute to CO2 emissions in nearby regions. However, the development of diversification agglomeration in one region can have CO2 emission reduction spillover effect on neighboring regions.

Review of a Tort Case regarding Liability for the Production of Air Pollutant-emitting Vehicles: Supreme Court Decision 2011Da7437, Decided on September 4, 2014 (자동차를 통한 대기오염물질의 배출에 따른 민법상 불법행위책임의 성립 여부: 대법원 2014. 9. 4. 선고 2011다7437 판결을 중심으로)

  • Lee, Sun Goo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.375-384
    • /
    • 2016
  • Objectives: This paper analyzes the intersection of tort law and environmental health in a recent court decision. Methods: This paper analyzes Supreme Court Decision 2011Da7437, Decided on September 4, 2014 and related lower court decisions. Results: The plaintiffs sought financial compensation from the defendants, arguing that air pollutants in gases emitted by vehicles produced by the defendants had caused them to acquire respiratory diseases. The district court highlighted the need to mitigate the burden of proof for the plaintiffs, but proceeded to review whether the plaintiffs proved the actual toxicity levels of the air pollutants, whether the defendant's vehicles were the main source of the emissions, the plaintiff's level of exposure to the pollutants, and causation between the emissions and the injury. By doing so, the district court required the plaintiffs to prove both indirect and direct facts of causation, increasing burden of proof for plaintiffs. The appellate court upheld the district court's decision, adding that the defendant's conduct did not constitute an illegal act because it did not violate the emissions standards set by environmental law. The Supreme Court upheld the appellate court's decision, reasoning that the epidemiological evidence cannot establish a direct causation for diseases that lack specificity. Conclusion: This case demonstrates that discussions in environmental health have significance in tort lawsuits. For each fact that the plaintiffs and defendants attempted to prove, environmental health research studies were offered as evidence. In addition, the courts decided the legality of the defendant's conduct based on emission standards set by environmental law.

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines (ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구)

  • Bae, Myung-Whan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

Phenomenological Combustion Modeling of a Direct Injection Diesel Engine with In-Cylinder Flow Effects

  • Im, Yong-H.;Huh, Kang-Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.569-581
    • /
    • 2000
  • A cycle simulation program is developed and its predictions are compared with the test bed measurements of a direct injection (DI) diesel engine. It is based on the mass and energy conservation equations with phenomenological models for diesel combustion. Two modeling approaches for combustion have been tested; a multi-zone model by Hiroyasu et al (1976) and the other one coupled with an in-cylinder flow model. The results of the two combustion models are compared with the measured imep, pressure trace and NOx and soot emissions over a range of the engine loads and speeds. A parametric study is performed for the fuel injection timing and pressure, the swirl ratio, and the squish area. The calculation results agree with the measured data, and with intuitive understanding of the general operating characteristics of a DI diesel engine.

  • PDF

A numerical study on the characteristics of internal flows in a gasoline direct swirl injector (직접분사식 가솔린 선회 분사기에서의 내부 유동특성에 관한 수치 해석)

  • Bae, S.H.;Moon, S.Y.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2001
  • The internal flow characteristics of a gasoline direct injector have been studied to improve fuel economy and reduce exhaust emissions. Computational Fluid Dynamics (CFD) is used to examine the internal flow of the GDI with the purpose of designing the optimum geometry of the injector. This study tests orifice length, cone angle, swirl angle, orifice diameter and needle lift. The results show that optimum sizes of the orifice length, cone angle, swirl angle, orifice diameter and needle lift are 0.8mm, $140^{\circ},\;120^{\circ},\;80mm\;and\;70{\mu}m$, respectively. The size of the lift does not affect the formation of the air core signficantly near the tip of the needle compared to the ball-type needle. The vena contracta phenomenon near the orifice inlet can be released by smoothing the edge.

  • PDF

Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine (디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.