• 제목/요약/키워드: Direct Cooling Type

검색결과 58건 처리시간 0.023초

스크롤기구를 적용한 신형식 스털링 엔진 (New-Type Stirling Engine Employing the Scroll Mechanism)

  • 김영민;신동길;이장희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1709-1716
    • /
    • 2003
  • Stirling engine is a heat engine with a high potential efficiency, multi-fuel capability, its low emission, quiet operation, very low maintenance requirement and long life. The Stirling cycle can ideally achieve optimum thermodynamic efficiency of the Carnot cycle. But the actual efficiency of practical reciprocating Stirling engine is much less than that of ideal Stirling cycle due to several mechanical limits. This paper presents a new-type Stirling engine employing the scroll mechanism superior to the reciprocating Stirling engine. The new-type Stirling engine is characterized as traits of continuous and wholly seperated compression and expansion, one-way flow, direct cooling and heating through the extensive surfaces of scroll wraps. By means of this traits, the new-type Stirling engine can achieve thermodynamic cycle closer to the ideal Stirling cycle and have many mechanical merits. Also, the new-type Stirling cycle can be applied as Stirling refrigerator and Duplex Stirling machine.

  • PDF

혼합흐름 사이클용 흡수식 냉온수기의 성능특성 (Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater)

  • 윤정인;신기부;박석호
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

Analysis of Diesel Combustion Flames with Highly Oxygenated Fuels

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.662-670
    • /
    • 2005
  • With highly oxygenated fuels the smoke emissions decreased sharply and linearly with increases in the fuel oxygen content and entirely disappeared at an oxygen content of $38wt-\%$ even at stoichiometric mixture conditions The NOx also decreased monotonically with increases in oxygen content. and thermal efficiency slightly improved because of a reduction in cooling loss and improvement in the degree of constant volume combustion. The mechanisms of the significant reductions in emissions and improvement in engine performance were analyzed with a bottom view type DI diesel engine. Together with direct flame images, flame images were taken through an optical fetter passing only two wavelengths for use in 2-D two-color analysis. The results showed that luminous flame decreased significantly with increases in oxygen content and was not detected for neat dimethoxy methane(DMM). The decrease in flame luminosity with highly oxygenated fuels corresponds with decreases in soot and cooling losses, including those due to heat radiation. The 2-D two-color flame analysis indicated that the high temperature flame and high KL factor areas apparently decreased with increasing fuel oxygen content. These results correspond strongly with decreases in NOx. smoke. and cooling loss with increases in oxygen content.

아이스슬러리형 축냉시스템을 이용한 쇼케이스 냉각장치의 열적성능에 관한 실험적 연구 (Thermal Performance of the Show-Case Cooler Using Ice Slurry Type Storage System)

  • 이동원;김정배
    • 에너지공학
    • /
    • 제20권1호
    • /
    • pp.26-29
    • /
    • 2011
  • 일반적인 냉각 과정에 적용되는 이차 냉매로서 아이스슬러리 적용 기술이 최근 개발되고 있다. 아이스슬러리는 액체와 거의 동일한 특성을 가지고 있고, 단위 체적당 아이스슬러리의 에너지용량이 얼음 입자의 잠열로 인해 냉각수나 브라인에 비해 상당히 높지만 파이프를 통해서 잘 유동시킬 수 있다. 아이스슬러리를 적용하는 냉각시스템의 설계를 위한 기초 결과를 제시하기 위하여, 쇼케이스의 냉각 코일에 아이스슬러리를 적용하는 실험을 수행하였다. 냉각 코일 입구에서의 아이스슬러리의 온도가 R22에 비하여 적어도 $5^{\circ}C$ 정도 높지만, R22를 적용하는 냉각시스템에 비하여 동등한 열적 성능을 가지고 있었다.

아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석 (Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System)

  • 이동원;이순명
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구 (Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System)

  • 김삼열;박진영;박재홍
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

Determination of Optimal Storage Condition for Pre-packed Hanwoo Loin

  • Seol, Kuk-Hwan;Park, Tu San;Oh, Mi-Hwa;Park, Beom-Young;Cho, Seong In;Lee, Mooha
    • 한국축산식품학회지
    • /
    • 제33권3호
    • /
    • pp.390-394
    • /
    • 2013
  • The aim of this study was to determine the optimal storage condition of pre-packed Hanwoo beef without freezing. Hanwoo loin was purchased from a local distributor at 48 h after slaughter, then sliced in $1.5{\pm}0.5$ cm thickness, and packed in a polyethylene (PE) tray covered with linear low-density polyethylene (LLDPE) film. The studied factors to set the optimal storage condition were chamber temperature (5, 2.5 and $-1^{\circ}C$ for 14 d), cooling method (direct and indirect cooling system), and ultraviolet (UV) light irradiation for beef surface sterilization (0, 30, 60, and 120 min). The changes of pH, thiobarbituric acid reactive substances (TBARS) and number of aerobic bacteria were measured during storage. Beef samples stored in $-1^{\circ}C$ showed the minimal increasing rate in TBARS and microbial growth. After 15 d of storage, there was no significant difference in pH and TBARS values. However, the microbial population of beef stored in direct type cooling chamber ($4.25{\pm}0.66$ Log CFU/g) was significantly lower than that of beef stored in indirect type chamber ($6.47{\pm}0.08$ Log CFU/g) (p<0.05). After 4 d of storage, 60 or 120 min UV light irradiated beef samples showed significantly lower microbial population, and at 14 d of storage, 60 min UV irradiated beef sample showed significantly lower microbial population ($3.14{\pm}0.43$ Log CFU/g) than control ($4.46{\pm}0.13$ Log CFU/g) (p<0.05). However, TBARS values of 60 or 120 min UV light irradiated beef samples were significantly higher than non-irradiated beef sample after 4 d of storage (p<0.05).

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

태양열 발전용 스크롤 방식 스털링 엔진의 특성 (Characteristics of Scroll-type Stirling Engine for Solar Power)

  • 김영민;신동길;김우영;김현진;이상태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.169-173
    • /
    • 2008
  • Stirling engine is a promising heat engine with a high efficiency, muti-fuel capability, low emission, quiet operation, very low maintenance and long life. As one of the promising applications, solar power system based on the Stirling dish, providing net solar-to-electric conversion efficiencies reaching 30%, can operate as stand-alone units in remote locations or can be linked together in groups to provide utility-scale power. This paper introduced a new Scroll-type Stirling engine, being developed for solar power, superior to conventional Stirling engines. The Scroll-type Stirling engine is characterized as traits of continuous and wholly separated compression and expansion; one-way flow system; direct cooling and heating the fluid in the working spaces through the extensive inner surfaces of scroll wraps. All theses traits contribute to achieving thermodynamic cycle closer to the ideal Stirling cycle (exactly speaking, Ericsson cycle).

  • PDF

케이스먼트 창호 개폐방식에 따른 자연환기 효과에 관한 시뮬레이션 연구 (A Study on the Simulation of Natural Ventilation Effect for Single-sided Casement Window as Opening Types)

  • 최태환;김태연;이승복
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.57-62
    • /
    • 2007
  • At the moment, the reduction of building energy consumption is a unavoidable task of mankind for conserving global environment. Decreasing overall U-value of building envelope and air infiltration, especially in Korean climate condition with clear four seasons, are the obvious solutions for the objective. Thus low glazing ratio with small window openings are required for heating and cooling load reduction in buildings. Using larger window openings could provide better natural ventilation but it also increases the direct solar radiation penetration into indoor space, heat gain in summer and heat loss in winter. On the other hand, the ventilation rates decreasing problem with smaller window openings could be occurred. As a solution for it, the use of casement window can cause increasing natural ventilation rates by wing wall effect. This paper focuses on deduce the most efficient opening type of casement window in Korean climate. To estimate ventilation performance of each opening types, CFD simulation was used. The best performance of opening type in every wind direction is opening both windows to the center and the most appropriate opening type for Korean climate is also opening both windows to center.