• Title/Summary/Keyword: Direct Contact Heat Exchanger

Search Result 35, Processing Time 0.024 seconds

Performance of a Direct Contact Heat Exchanger with Meshes for a Solar Thermal Energy System

  • Kim, Chong-Bo;Kim, Nam-Jin;Seo, Tae-Beom;Hur, Byung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-276
    • /
    • 2001
  • In order to improve the efficiency of a direct contact heat exchanger for a solar thermal energy system, the working fluid should be dispersed into small and uniform droplets, and stay within a heat exchanger for a long time. Therefore, installation of meshes in a direct contact heat exchanger is suggested in the present study, and the performance of the direct contact heat exchanger with several layers of meshes is experimentally investigated. Diethyl phthalate is used as the working fluid, and the performance of the heat exchanger is tested for several different operating conditions and compared to that of the heat exchanger without meshes. The results of this investigation show that meshes make droplets uniform and small when the flow rate is low. The relationship between the Peclet number and the Nusselt number becomes linear if it is steady. And, the Nusselt number for the direct contact heat exchanger with meshes becomes greater than that without meshes as the Peclet number increases.

  • PDF

A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger

  • Kim, Chong-Bo;Kang, Yong-Heack;Kim, Nam-Jin;Hur, Byung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.344-353
    • /
    • 2002
  • A reliable computational heat transfer model has been investigated to define the heat transfer characteristics of a spray column direct contact heat exchanger, which is often utilized in the process involving counterflows for heat and mass transfer operations. Most of the previous studies investigated are one-dimensional unsteady solutions based on rather fragmentary experimental data. Development of a multidimensional numerical model and a computational algorithm are essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. The present study has been carried out numerically and establishes a solid simulation algorithm for the operation of a direct contact heat exchanger. Operational and system parameters such as the speed and direction of working fluid droplets at the injection point, and the effects of aspect ratio and void fraction of continuous fluid are examined thoroughly as well to assess their influence on the performance of a spray column.

A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉열교환기의 열전달특성에 관한 수치적 연구)

  • 강용혁;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.735-744
    • /
    • 2000
  • In order to define the heat transfer characteristics in a spray column direct contact heat exchanger, the development of a multidimensional numerical model and computational algorithm is essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. In the present study, it has been carried out numerical calculations using a two-dimensional model for operation of a direct contact heat exchanger. Such operational and system parameters as the injection velocity, void fraction, aspect ratio and injection temperature of each fluid are examined thoroughly to assess their influence on the performance of a spray column. Analyzed results has shown that our two-dimensional model predicts the heat transfer phenomena well in a spray column.

  • PDF

A Study on a Heat Transfer Characteristics of Direct Contact Heat Exchanger for Steam Condensation According to Various Cooling Water Flow and Internal Pressure(The Purpose of Combination with LNG Evaporator) (증기응축용 직접접촉식 열교환기의 냉각수 유량과 내부압 변화에 따른 열전달 특성연구(LNG 기화기와의 조합목적))

  • Lee, B.C.;Han, S.T.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.153-160
    • /
    • 1991
  • Heat transfer characteristics of a direct contact heat exchanger utilizing sieve trays and spray nozzles for steam condensation for the purpose of combining with a LNG evaporator have been investigated with various cooling water flow rates and different vacuum pressures within the heat exchanger for the purpose of steam condensation. Temperature profiles and the volumetric overall heat transfer coefficients in a direct contact heat exchanger have been obtained for comparisons. The results show that the temperature differences between cooling water and steam along the direct contact heat exchanger height are rapidly decreasing and the volumetric overall heat transfer coefficients of the exchanger improves greatly as the inside vacuum pressure increases. The values of the overall heat transfer coefficients at P=-680mmHg have been increased significantly compared with at atmospheric pressure. At given pressure conditions, it is found that the values of average volumetric overall heat transfer coefficients for the sieve tray are found to be approximately 10% higher than those of the spray nozzle.

  • PDF

Heat and Mass Transfer between Hot Waste Gas and Cold Water in a Direct Contact Heat Exchanger (직접접촉식 열교환기내에서 물과 배기가스의 직접접촉에 의한 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1171-1178
    • /
    • 1992
  • An experiment was performed to describe the heat and mass transfer occurring between hot waste gas and cold water through direct contact in a direct contact heat exchanger. This model was then used to obtain an equation of overall heat transfer coefficent based on heat exchanger volume. The diffusion heat transfer rate is 2-3 times larger than the convection heat transfer rate as results of condensation of the water vapor contained in the waste gas. The boiler efficiency increases over 10%.

A Study on Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 특성에 관한 연구)

  • 한승탁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.903-911
    • /
    • 1994
  • This study addresses the phenomena of bubbling, icing, eruption, component varieties of the evaporated natural gas, and volumetric heat transfer coefficients obtained during the operation of a proposed LNG evaporator between LNG and water in direct contact. In the present investigation, the explosive and eruption phenomena within the water column were not observed during the entire operation of the heat exchanger. Compared with the natural gas produced by conventional LNG evaporator, the analysis of the gas produced by the direct contact LNG evaporator shows that nitrogen, methane, and ethane components were reduced by 0.002~0.007mol%(4~14%), 1.6~1.92mol%(1.9~2.3%) and 0.17~1.28mol%(1.1~8.4%) respectively, while the moisture content was rather increased by 0.51~0.76mol%. The maximum volumetric heat transfer coefficient of the direct contact heat exchanger was found to be $21, 800kW/m^3\cdotK$.

Performance of Air-Water Direct Contact Heat Exchanger Linked to Heat Pump (히트펌프에 연계된 공기-물 직접접촉식 열교환기의 성능)

  • Kim, Y.H.;Keum, D.H.;Ryou, Y.S.;Kang, Y.K.;Kim, J.G.;Jang, J.K.;Lee, H.M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • Fossil fuel was a major energy resource but the consumption of fossil fuel will decrease gradually because of limited deposits and non-environmental features. In contrast, because the renewable energy resources are infinite and sustainable, their consumption has increased annually. To promote the supply of these infinite natural energy we have to develop more efficient and inexpensive heat recovery system. In this study a simple device was designed as a heat exchanger, that is a direct contact heat exchanger. This heat exchanger was manufactured in cylindrical shape with height of 1,500 mm and diameter of 1,000 mm. To test the efficiency of this heat exchanger, it was connected to the evaporator of heat pump system. During the experimental tests, the humid air of $10{\sim}30^{\circ}C$ was supplied to this air-to-water heat exchanger and then the water flow rate was set to 2500~3500 L/h. Heat recovery rate of this heat exchanger increased in proportion to entering air temperature and water flow rate.

  • PDF

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

Analysis of a gas-particle direct-contact heat exchanger with two-phase radiation effect (복사효과를 고려한 기체-입자 직접접촉식 열교환기 해석)

  • Park, Jae-Hyeon;Baek, Seung-Uk;Gwan, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.542-550
    • /
    • 1998
  • A direct contact heat exchanger using particle-suspended gas as a heat transfer medium is analyzed with an extended emphasis on the radiation, i. e., considering the radiation by both gas and particles. While the Runge-Kutta method is used for a numerical analysis of the momentum and energy equations, the finite volume method is utilized to solve the radiative transfer equation. Present study shows a notable effect by the gas radiation in addition to the particle radiation, especially when changing the chamber length as well as the gas and particle mass flow rate. When the gas and particle mass flow rate is raised, the gas temperature in the particle heater still increases as the gas absorption coefficient increases, which is different from the results for the small scale heat exchanger.

Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems (PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구)

  • JAEHWAN KIM;JISEUNG LEE;INSEAK KANG;HYUNCHUL JU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2024
  • This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.