• 제목/요약/키워드: Dipyridyl ligand

검색결과 12건 처리시간 0.016초

비피리미딘계 배위자를 골격으로 하는 Pt(II)착체의 합성 및 특성 (A Synthesis and Characterization of Pt(II) Complexes with Bipyrimidin-based Back-bone System)

  • 손석환;안호근;정민철
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.555-559
    • /
    • 2016
  • 본 연구에서는 2,2'-bispyrimidine (bpim), 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5-mebpy), 5'-bromo-2,2'-bipyridine (5-brbpy), 5,5'-dibromo-2,2'-bipyridine (5,5-brbpy), 4,4'-dimethyl-2,2'-bipyridine (4,4-mebpy), 4,4'-dihexyl-2,2'-Bipyridine (4,4-hebpy), 1,10'-Phenanthroline (phen), 3,4,7,8'-tetramethyl-1,10'-Phenanthroline (3,4,7,8-phen)을 사용하여 단핵 Platinum착체를 합성하였다. 합성되어진 Platinum착체의 화학적 구조를 결정하기 위해서 $^1H(^{13}C)$-NMR, FT-IR을 사용하였으며, 광 물리학적 특성에 대한 측정은 UV-vis, PL을 통하여 측정하였다. 합성한 Platinum착체는 356 nm~421 nm영역에서 발광파장이 확인되었으며, DMSO용액에서 내부양자효율이 0.05~0.46으로 나타났다.

Selective Dimerization and Cyclotrimerization of Phenylacetylene with Rhodium and Iridium Complexes

  • Chin, Chong-Shik;Won, Gyong-Shik;Song, Joong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권11호
    • /
    • pp.961-966
    • /
    • 1994
  • Oligomerization of phenylacetylene is catalyzed by $Rh(ClO_4)(CO)(PPh_3)_2$ (Rh-1), $[Rh(CO)(PPh_3)_3]ClO_4$ (Rh-2), $[Rh(COD)L_2]ClO_4 (L_2=(PPh_3)_2$, Rh-3; $(PPh_3)(PhCN)$, Rh-4; $(PhCN)_2$, Rh-5), $[Rh(C_3H_5)(Cl)(CO)(SbPh_3)_2]ClO_4$ (Rh-6), $[Ir(COD)L_2]ClO_4 (L_2=(PPh_3)_2$, $Ir-1; (PPh_3)(PhCN)$, $Ir-2; (PhCN)_2$, Ir-3; (AsPh_3)(PhCN)$, $Ir-4; Ph_2PCH_2CH_2PPh_2$, Ir-5; COD, Ir-6 and 2,2'-dipyridyl, Ir-7), $Ir(ClO_4)(CO)(PPh_3)_2$, $Ir-8, [Ir(PhCN)(CO)(PPh_3)_2]ClO_4$, Ir-9 to produce dimerization products, 1,3-diphenylbut-1-yn-3-ene, 1, (E)-1,4-diphenylbut-1-yn-3-ene, 2 and (Z)-1,4-diphenylbut-1-yn-3-ene, 3, and cyclotrimerization products, 1,3,5-triphenylbenzene, 4 and 1,2,4-triphenylbenzene, 5. Product distribution of the oligomers varies depending on various factors such as the nature of catalysts, reaction temperature, counter anions and excess ligand present in the reaction mixtures. Increasing reaction temperature in general increases the yield of the cyclotrimerization products. Exclusive production of dimer 1 and trimer 4 can be obtained with Ir-1 at 0 $^{\circ}$C and with Ir-2 in the presence of excess PhCN (or $CH_3CN$) at 50 $^{\circ}$C, respectively. Dimer 2 (up to 81%) and trimer 5 (up to 98%) are selectively produced with Rh-1 at 50 and 100 $^{\circ}$C respectively. Production of 3 is selectively increased up to 85% by using $PF_6$- salt of $[Ir(COD)(PPh_3)_2]$+ at 25 $^{\circ}$C. Addition of $CH_3I$ to Rh-1 produces $CH_3PPh_3^+I-$ and increases the rate of oligomerization(disappearance of phenylacetylene). Among the metal compounds investigated in this study, Ir-1 catalyzes most rapidly the oligomerization where the catalytically active species seems to contain lr(PPh3)2 moiety. The stoichiometric reaction of phenylacetylene wth Ir-9 at 25 $^{\circ}$C quantitatively produces hydridophenyl-ethynyl iridium(III) complex, $[lr(H)(C{\equiv}CPh)(PhCN)(CO)(PPh_3)_2]ClO_4$ (Ir-11), which seems to be an intermediate for the oligomerization.