• Title/Summary/Keyword: Dipole interaction.

Search Result 114, Processing Time 0.026 seconds

Studies of electrokinetic motion of fullerene in liquid crystal medium for electronic paper displays (전자종이 표시소자를 위한 수평전기장에서의 플러렌 움직임 연구)

  • Kim, Mi-Young;Kim, Sung-Min;Jo, Eun-Mi;Choi, Jung-Hun;Hwang, Ji-Hye;Srivastava, Anoop Kumar;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.63-64
    • /
    • 2008
  • Electrokinetic motion of fullerene ($C_{60}$) particles in liquid crystal (LC) medium under an in-plane electric field has been studied for the application to the electronic paper display. Fullerenes move in the direction of applied electric field due to interaction between the induced dipole moment on $C_{60}$ and external electric field at lower threshold voltages compared to other devices such as QR-LPD (Quick Response Liquid Powder Display) and TBD (Twisting Ball Display). We also confirmed the bistability of fullerene particles in LC medium and the results showed that the 87% and 81% of original reflectance or transmittance of image was retained after 24 hours and 48 hours respectively. Our studies show the possibility that fullerenes can be used for electronic paper display.

  • PDF

The Permeation Properties of $O_{2}\;and\;N_{2}$ for BPSf/TMSPSf Blend Membrane (BPSf/TMSSf 블렌드막을 통한 산소와 질소의 투과특성)

  • Kim Hyunjoon;Hong Suk-In
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • The permeation properties of $O_2\;and\;N_2$ were measured for bromobisphenol A polysulfone(BPSf), bisphenol A trimethylsilylated polysulfone(TMSPSf) and their blend membrane to investigate the structure-properties relationships. BPSf shows relatively high permselectivity. It can be explained that the strong polarity of bromine in BPSf increases chain packing ability. In this case the distance of polymer chains is reduced by increasing of interchain interaction by induced dipole. TMSPSf shows relatively high permeability. The higher value of permeability coefficients for TMSPSf is due to the substitution of very bulky trimethylsilyl groups. The replacement of phenyl hydrogens of bisphenol A polysulfone(PSf) with trimethylsilyl groups results in higher fractional free volume(FFV). In this work, taking into account the complimentary features of BPSf and TMSPSf, BPSf/TMSPSf blend was prepared and the compatibility in mixing are examined. The BPSf/TMSPSf blend shows higher permeability than commercial PSf, with minimum loss of selectivity. The miscibility of the BPSf/TMSPSf blend is confirmed by the single glass transition temperature.

  • PDF

The Study of Antiferromagnetic Spin-lattice Coupling of FeCr2Se4 (FeCr2Se4의 반강자성 스핀-격자 상호작용 연구)

  • Kang, Ju-Hong;Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung;Lee, H.G.;Park, Min-Seok;Lee, Sung-Ik
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.86-89
    • /
    • 2007
  • [ $FeCr_2Se_4$ ] prepared under the high pressure (3 GPa) has been studied with x-ray, neutron diffraction techniques, superconducting quantum interference device (SQUID) magnetometer, resistance, and Mossbauer spectroscopy. The temperature dependence of resistance is explained by Mott-VRH and small polaron model for the regions I (T<20 K) and II (T>42 K), respectively. Neutron diffraction results show an antiferromagnetic spin-lattice coupling near the Neel temperature. So finally the distance of atom is enlarged in region (110$FeCr_2Se_4$ shows convex type of temperature dependence.

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성)

  • Jung, Kyeong Youl;Kim, Woo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

ERF Components Patterns of Causal Question Generation during Observation of Biological Phenomena : A MEG Study (생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성 : MEG 연구)

  • Kwon, Suk-Won;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.336-345
    • /
    • 2009
  • The purpose of this study is to analysis ERF components patterns of causal questions generated during the observation of biological phenomenon. First, the system that shows pictures causing causal questions based on biological phenomenon (evoked picture system) was developed in a way of cognitive psychology. The ERF patterns of causal questions based on time-series brain processing was observed using MEG. The evoked picture system was developed by R&D method consisting of scientific education experts and researchers. Tasks were classified into animal (A), microbe (M), and plant (P) tasks according to biological species and into interaction (I), all (A), and part (P) based on the interaction between different species. According to the collaboration with MEG team in the hospital of Seoul National University, the paradigm of MEG task was developed. MEG data about the generation of scientific questions in 5 female graduate student were collected. For examining the unique characteristic of causal question, MEG ERF components were analyzed. As a result, total 100 pictures were produced by evoked picture and 4 ERF components, M1(100~130ms), M2(220~280ms), M3(320~390ms), M4(460~520ms). The present study could guide personalized teaching-learning method through the application and development of scientific question learning program.

  • PDF

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.

Studies on the Complexes of Lanthanide ion with Multidentate Ligand (I). Determination of Thermodynamic Parameters with Solution Calorimetric Method in Nonaqueous Solvents (란탄족 원소의 여러자리 리간드 착물에 관한 연구 (제 1 보) 물아닌 용액에서 용액열량계에 의한 열역학적 함수결정)

  • Sam-Woo Kang;Won-Hae Koo;Soo-Min Lee;Chang Choo-Hwan;Moo-Yol Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 1989
  • Log K, ${\Delta}$H and ${\Delta}$S for the complexation of $La^{3+},\;Ce^{3+}$ and $Eu^{3+}$with various multidentate ligand containing crown ether, diaza crown ether and diamine ether have been determined in methanol and acetonitril solutions at $25^{\circ}C$ by solution calorimetric titration method. The greater stability constant of $La^{3+}$-15C5 than those of 18C6 diaza [2.2] in methanol are discussed in terms of the size of metal ion and the ligand cavity and of metal ion solvation. The stabilities of $Ce^{3+}$ and $La^{3+}$ ion complexes with a various multidentate ligand in acetonitril are in the order of (diamine ether)<18C6<15C5$Ce^{3+}$, $La^{3+}$ and $Eu^{3+}$-diaza [2.2] complexes in acetonitril are increased with the following order: $Eu^{3+}$ < $La^{3+}$ < $Ce^{3+}$, that is increasing order of the optimum size and of the charge density of metal ion.

  • PDF

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4 (LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구)

  • Kwon, Woo-Jun;Lee, In-Kyu;Rhee, Chan-Hyuk;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF