• Title/Summary/Keyword: Dipolar

Search Result 183, Processing Time 0.022 seconds

Amine Donors in Nonlinear Optical Molecules: Methyl and Phenyl Substitution Effects on the First Hyperpolarizability

  • Park, Gyoo-Soon;Ra, Choon-Sup;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1671-1674
    • /
    • 2003
  • The effects of amine donors ($a:NH_2,\;b:NMe_2,\;c:NMePh,\;d:NPh_2$) and conjugation length on the molecular hyperpolarizabilities of a series of dipolar molecules have been theoretically investigated by using CPHF/6-31G method. The first hyperpolarizabilities (${\beta}$) of p-nitrobenzene derivatives increase with the donor in the order, $NH_2\;<\;NMe_2\;<\;NMePh\;<\;NPh_2$, whereas slightly different order is observed in more conjugated derivatives, i.e., $NH_2\;<\;NPh_2\;<\;NMe_2\;<\;NMePh$. The result has been attributed to the extent of charge transfer and torsion angle. Moreover, the results show that "non-traditional" ${\pi}$-conjugation effect exists in small compounds and decreases as the conjugation length between donor and acceptor increases.

Calculation of the NMR Chemical Shift for a 3d$^2$ System in a Strong Crystal Field of Octahedral Symmetry

  • Ahn, Sang-Woon;Kim, Dong-Hee;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.63-67
    • /
    • 1985
  • The NMR chemical shift arising from 3d electron spin dipolar nuclear spin angular momentum interactions for a 3d$^2$ system in a strong crystal field environment of octahedral symmetry has been investigated when the fourfold axis is chosen to be our axis of quantization. The NMR shift is separated into the contribution of 1/R$^5$ and 1/R$^7$ terms. A comparision of the multipolar terms with nonmultipolar results shows that the 1/R$^5$ term contributes dominantly to the NMR shift and there is in good agreement between the exact solution and the multipolar results when R ${\ge}$ 0.25. A temperature dependence analysis may lead to the results that the 1/T$^2$ term has the dominant contribution to the NMR shift for a paramagnetic 3d$^2$ system but the contribution of the 1/T term may not be negligible.

Calculation of NMR Shift in Paramagnetic System when the Threefold Axis is Chosen as the Quantization Axis (Ⅲ). The NMR Shift for 3d$^2$ System in a Strong Crystal Field of Octahedral Symmetry

  • Sang Woon Ahn;Se Woong Oh;Kee Hag Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 1984
  • A general expression using the nonmultipole expansion method is derived for the NMR shift arising from 3d electron angular momentum and the 3d electron spin dipolar-nuclear spin angular momentum interactions for a 3$d^2$ system in a strong crystal field environment of octahedral symmetry when the threefold axis is chosen as the quantization axis. The NMR shift is separated to the contribution of constant, $1/R^5\;and\;1/R^7$ terms and compared with the multipolar terms. We find that $1/R^5$ term contributes dominantly to the NMR shift but the contribution of $1/R^7$ term may not be negligible. It is also found that the exact values of the NMR shift are in agreement with the multipolar results for distances larger than 0.35 nm.

Hyperfine Interaction Integrals for NMR Chemical Shifts in 5f Paramagnetic Systems

  • 이기학;이지영;김동희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.424-427
    • /
    • 1997
  • To study the NMR chemical shift arising from the 5f-electron orbital angular momentum and the 5f-electron spin dipolar-nuclear spin angular momentum interactions, the evaluation of the hyperfine integrals has been extended to any pairs of SCF type 5f orbitals adopting a general method which is applicable to a general vector R, pointing in any direction in space. From the electronic wavefunctions for 5f orbitals expressed in common coordinate system, the radial part of the hyperfine interaction integrals are derived by translating the exponential part, r2 exp(-2βr), in terms of R, rN and the modified Bessel functions. The radial integals for 5f orbitals are tabulated in analytical forms. When two of the hyperfine integrals along the (100), (010), (001), (110), and (111) axes are calculated using the derived radial integrals, the calculated values for the 5f system change sign for R-values larger than R 0.35 nm. But the calculated values for the 4f systems change sign for R-values larger than R 0.20 nm.

Paramagnetic Inversion of the Sign of the Interference Contribution to the Transverse Relaxation of the Imido Protons of the Coordinated Imidazoles in the Uniformly $^{15}N$ Labeled Cytochrome $c_3$

  • Andre Kim;Jeong, In Cheol;Sim, Yun Bo;Gang, Sin Won;Park, Jang Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1197-1201
    • /
    • 2001
  • In the spectrum of uniformly 15N labeled cytochrome c3, the relative linewidths of the doublet peaks of the 15N-coupled imido proton of the coordinated imidazole group were reversed on oxidation. This inversion was explained by the interference relaxation process between the electron-proton dipolar and 15N-1H dipolear interactions. The inversion can be used to assign the imido protons of the coordinated imidazole groups in heme proteins.

An NMR Study on Dynamics of$ AX_3$ Spin System as Illustrated By Methyl Group in 2,6-Dichlorotoluene

  • 노정래;현남궁;이조웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1326-1333
    • /
    • 1998
  • The study of coupled relaxation for methyl spin system in 2,6-dichlorotoluene was performed on the basis of the magnetization mode formalism. Using five initial perturbing pulse sequences, eight experimntal data sets were obtained, which were fitted with theoretical expressions with nine spectral density parameters. The same experiment was carried out at both 50.3 MHz and 125.6 MHz in carbon frequency. The measured spectral densities at both fields are similar in the exception of that related with carbon random field term. Furthermore, from the dipolar spectral density, the physical values may be extracted depending on the model of molecular reorientation. For example, it was assumed that the molecular framework undergoes asymmetric diffusive rotational process and methyl group reorients by either diffusive rotation about its symmetry axis or jump among internal rotational potential minima.

Dielectric Changes During the Curing of Epoxy Resin Based on the Diglcidyl Ether of Bisphenol A (DGEBA) with Diamine

  • 김홍경;차국헌
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1329-1334
    • /
    • 1999
  • The curing characteristics of diglycidyl ether of bisphenol A (DGEBA) with diaminodiphenylmethane (DDM) as a curing agent were studied using differential scanning calorimetry (DSC), rheometrics mechanical spectrometry (RMS), and dielectric analysis (DEA). The isothermal curing kinetics measured by DSC were well represented with the generalized auto-catalytic reaction model. With the temperature sweep, the inverse relationship between complex viscosity measured by RMS and ionic conductivity obtained from DEA was established indicating that the mobility of free ions represented by the ionic conductivity in DEA measurement and the chain segment motion as revealed by the complex viscosity measured from RMS are equivalent. From isothermal curing measurements at several different temperatures, the ionic conductivity contribution was shown to be dominant in the dielectric loss factor at the early stage of cure. The contribution of the dipole relaxation in dielectric loss factor became larger as the curing further proceeded. The critical degrees of cure, at which the dipolar contribution in the dielectric loss factor starts to appear, increases as isothermal curing temperature is increased. The dielectric relaxation time at the same degree of cure was shorter for a sample cured at higher curing temperature.

The Pseudocontact Shift for a $3d^9$ System in a Strong Crystal Field Environment of Tetragonally Distorted Tetrahedral Symmetry

  • Kim, Dong-Hee;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.618-625
    • /
    • 1991
  • A general expression adopting a nonmultipole expansion method is derived for pseudocontact contribution to the NMR chemical shift arising from the electron orbital angular momentum and electron spin dipolar-nuclear spin angular momentum interaction of $3d^9$ system in a strong crystal field of tetragonally distorted tetrahedral symmetry. From this expression all the multipolar term are determined and the exact solution of ${\Delta}$B/B(ppm) is compared with the multipolar term. The $1/R^5$ term in the multipolar terms contributes dominantly to the NMR chemical shift but the other terms are certainly significant except that of the <111> axis. In addition, an analysis of the temperature dependence of the NMR chemical shift further illustrates that considerable care must be taken in interpeting NMR results in paramagnetic system.

Neural source localization using particle filter with optimal proportional set resampling

  • Veeramalla, Santhosh Kumar;Talari, V.K. Hanumantha Rao
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.932-942
    • /
    • 2020
  • To recover the neural activity from Magnetoencephalography (MEG) and Electroencephalography (EEG) measurements, we need to solve the inverse problem by utilizing the relation between dipole sources and the data generated by dipolar sources. In this study, we propose a new approach based on the implementation of a particle filter (PF) that uses minimum sampling variance resampling methodology to track the neural dipole sources of cerebral activity. We use this approach for the EEG data and demonstrate that it can naturally estimate the sources more precisely than the traditional systematic resampling scheme in PFs.