• Title/Summary/Keyword: Diphtheria vaccine

Search Result 21, Processing Time 0.019 seconds

The Evolution and Value of Diphtheria Vaccine (디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구)

  • Bae, Kyung-Dong
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.

Quadrivalent Combined Vaccine, Including Diphtheria Toxoid, Tetanus Toxoid, Detoxified Whole Cell Pertussis, and Hepatitis B Surface Antigen

  • Bae, Cheon-Soon;Lim, Gwan-Yeul;Kim, Jong-Su;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.338-343
    • /
    • 2003
  • Various factors, such as the adsorption pH, adjuvant dose, and adjuvant age, which affect the adsorption degree and immunogenicity of an antigen, were investigated. In addition, the effect of pH, antigen content, and adjuvant content on immunogenicity was also studied through animal experiments. Within the ranges studied, a low pH for adsorption, freshly preformed gel, and low pH formulation for the combined DTwP-HepB vaccine were preferrable for the adsorption of the antigens. In addition, a higher DT content was found to have a positive effect on the HBsAg immunogenicity in the combined vaccine. Accordingly, considering the factors affecting the adsorption rate and immunogenicity of the antigens, a novel DTwP-HepB vaccine (40 Lf/ml of diphtheria toxoid, 15 Lf/ml of tetanus toxoid, 20 OU/ml of detoxified whole cell pertussis, $24\;\mu\textrm{g}$ of HBsAg, $24\;\mu\textrm{g}\;Al/ml\;of \;Al(OH)_3\;gel,\;776\;\mu\textrm{g}\; Al/ml\;of\;AIPO_4\;gel$, and pH 7.1) was developed, whose immunogenicity was comparable to the case of administrating, separately and simultaneously, a combined DTwP vaccine (40 Lf/ml of diphtheria toxoid, 15 Lf/ml of tetanus toxoid, 20 OU/ml of detoxified whole cell pertussis, $300\;\mu\textrm{g}\;Al/ml\;of\; AIPO_4\;gel$, and pH 7.1) and mono HepB vaccine [$Hepavax^{\circledR},\;24\;\mu\textrm{g}/ml$ of HBsAg and $500\;\mu\textrm{g}\;Al/ml\;of\;Al(OH)_3\;gel$], which satisfies the potency criteria of the K-FDA for a combined DTwP vaccine and mono HepB vaccine.

A Study on Diphtheria Antibody Titer of Residents in Seoul Area (서울 지역에 거주하는 일부 주민들의 디프테리아 항체가에 관한 연구)

  • 김재옥;양원호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.73-81
    • /
    • 1997
  • Diphtheria was the world-spread, respiratory infectious disease in the past. But after developing the diphtheria toxoid, diphtheria vaccine, composed of diphtheria toxoid, is generalized, so prevalence of diphtheria is sharply dropped. But diphtheria is come back in NIS(New Independent States) in 1990s. It is believed that recurrence of diphtheria is mainly due to shortage of protective diphtheria antibody titer in adults. And it is related to 70% prevalence in adults, not in children. Considering this changing environment, this study was designed to research the diphtheria antibody titer of whole population and existence of titer difference by sex. Also it was studied whether ELISA has fitness as determination method of diphtheria antibody titer compared with neutralization method on microcell culture. This study was done to 277 samples of three hospitals in Seoul area, and sera was tested by neutralization method on microcell culture and ELISA method. The results of this study were as follows 1) Of this studied population, 31.05% had an antibody titer below the protective level (<0.01 IU/ml), 40.79% had a titer of a relative degree of protection (0.01-0.09 IU/ml) and 28.16% had a reliable degree of protection ($\geq$0.1 IU/ml). Therefore, 68.95% had a basic protective antibody titer level. 2) 20-40 age group showed the lowest diphtheria antibody titer among the studied population. 3) GMT of diphtheria antibody titer was the highest in the children. But, after child period, GMT was fallen. Standard deviation value was the lowest in older group. 4) Protective level of diphtheria antibody titer of male was slightly higher than female (70.94% vs 66.66%). But this difference was not statistically significant. 5) Diphtheria antibody titer by ELISA method was wholly higher than by neutralization method on microcell culture. Compared the two results by ELISA and neutralization, the regression coefficient was 0.38. And in titer, which was obtained by ELISA method, false-positive results was abundant.

  • PDF

Immunogenic characterization of AlPO4 adsorbed Td vaccine and liposome-mediated Td vaccine

  • Remees Shuhsadhe;Junise Vazhayil;Heyam Saad Ali;Hiba Orsud;Ahmed Elmontaser Omer Mergani
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.232-239
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the antigenic potency and stability of tetanus and diphtheria (Td) vaccines when combined with aluminum phosphate (AlPO4) and liposome adjuvants. Materials and Methods: In vitro and in vivo analyses were conducted using the single radial immunodiffusion method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Td vaccines were prepared with AlPO4 adsorption and liposome-mediated delivery, and protein antigens were characterized using these methods. Results: The results revealed that the liposome-mediated Td vaccines exhibited higher immunogenicity compared to the AlPO4-adsorbed Td vaccines. Additionally, the liposome-mediated Td vaccines demonstrated higher stability as native antigens. Conclusion: This study highlights the importance of utilizing liposome adjuvants in vaccine development. The liposome-mediated Td vaccines showed enhanced immunogenicity and stability, making them a promising approach for improving vaccine efficacy. Understanding and optimizing adjuvant strategies can contribute to the development of effective vaccines against various diseases.

Purification of Diphtheia Toxin and the Production of Detoxificated Toxoid Vaccine (디프테리아 toxin 정제와 무독화 toxoid 백신 생산)

  • Cho, Min;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.248-254
    • /
    • 1999
  • Adverse reactions after injection of diphtheria vaccine are induced by impurities present in crude toxoids that cannot be removed completely by purification of toxoids after formalization. To increase toxoid purity, toxin purification was tried before formalization. Crude toxin was purified with ultrafiltration and ion-exchange chromatography. Purified toxin purity was improved 2.9 times higher than crude toxin, and purity was 2,560 Lf/mg PN. Purified toxin was detoxified with formalin and lysine, and potency test were performed. Toxoid, prepared from toxin treated with formalin and lysine, did not show reversion to toxin and purity was higher than the toxoid purified after formalization. Therefore, we concluded that the use of toxoid vaccine prepared from toxin purified is a useful method of minimize adverse reaction after injection of diphtheria vaccine.

  • PDF

Recommendation for use of diphtheria and tetanus toxoids and acellular pertussis, inactivated poliovirus, Haemophilus influenzae type b conjugate, and hepatitis B vaccine in infants

  • Cho, Hye-Kyung;Park, Su Eun;Kim, Yae-Jean;Jo, Dae Sun;Kim, Yun-Kyung;Eun, Byung-Wook;Lee, Taek-Jin;Lee, Jina;Lee, Hyunju;Kim, Ki Hwan;Cho, Eun Young;Ahn, Jong Gyun;Choi, Eun Hwa;The Committee on Infectious Diseases of the Korean Pediatric Society,
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.12
    • /
    • pp.602-607
    • /
    • 2021
  • In April 2020, the Ministry of Food and Drug Safety licensed a hexavalent combined diphtheria and tetanus toxoids and acellular pertussis (DTaP), inactivated poliovirus (IPV), Haemophilus influenzae type b (Hib) conjugated to tetanus protein, and hepatitis B (HepB) (recombinant DNA) vaccine, DTaP-IPV-Hib-HepB (Hexaxim, Sanofi Pasteur), for use as a 3-dose primary series in infants aged 2, 4, and 6 months. The DTaP-IPV-Hib-HepB vaccine is highly immunogenic and safe and provides a long-term immune response based on studies performed in a variety of settings in many countries, including Korea. This report summarizes the Committee on Infectious Diseases of the Korean Pediatric Society guidelines for the use of this newly introduced hexavalent combination vaccine.

Development of a Quadrivalent Combined DTaP-HepB Vaccine with a Low Toxicity and a Stable HBsAg Immunogenicity

  • Bae, Cheon-Soon;Park, Kwung-Nam;Ahn, Sang-Jeom;Kim, Jong-Su;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.787-792
    • /
    • 2002
  • When developing a combined DTaP-HepB vaccine, toxicity and HBsAg immunogenicity are both important considerations. Thus, for a combined DTaP-HepB vaccine with a low toxicity, the effect of the DTaP content and $Al(OH)_3$, gel concentration on the vaccine toxicity was investigated. Within the range studied, the higher the concentrations, the higher the vaccine toxicity. The importance of the tetanus toxoid content in the combined DTaP-HepB vaccine was also revealed. A higher concentration of the tetanus toxoid was found to have a negative effect on the stability of the HBsAg immunogenicity in the combined vaccine. Accordingly, considering the factors affecting toxicity and HBsAg immunogenicity, a novel DTaP-HepB vaccine (30 Lf/ml of diphtheria toxoid, 5 Lf/ml of tetanus toxoid, 10 $\mu\textrm{g}$ PN/ml of acellular pertussis, 24 $\mu\textrm{g}$/ml of HBsAg, and 500 $\mu\textrm{g}$ Al/ml of $Al(OH)_3$ gel) was developed. It has a low toxicity and a stable HBsAg immunogenicity and also satisfies the potency criteria of K-FDA for a combined DTaP vaccine.

Safety assessments of recombinant DTaP vaccines developed in South Korea

  • Gi-Sub Choi;Kyu-Ri Kang;Seung-Bum Kim;Joon-Hwan Ji;Gyu-Won Cho;Hyun-Mi Kang;Jin-Han Kang
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.155-165
    • /
    • 2024
  • Purpose: Pertussis bacteria have many pathogenic and virulent antigens and severe adverse reactions have occurred when using inactivated whole-cell pertussis vaccines. Therefore, inactivated acellular pertussis (aP) vaccines and genetically detoxified recombinant pertussis (rP) vaccines are being developed. The aim of this study was to assess the safety profile of a novel rP vaccine under development in comparison to commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccines. Materials and Methods: The two positive control DTaP vaccines (two- and tri-components aP vaccines) and two experimental recombinant DTaP (rDTaP) vaccine (two- and tri-components aP vaccines adsorbed to either aluminum hydroxide or purified oat beta-glucan) were used. Temperature histamine sensitization test (HIST), indirect Chinese hamster ovary (CHO) cell cluster assay, mouse-weight-gain (MWG) test, leukocytosis promoting (LP) test, and intramuscular inflammatory cytokine assay of the injection site performed for safety assessments. Results: HIST results showed absence of residual pertussis toxin (PTx) in both control and experimental DTaP vaccine groups, whereas in groups immunized with tri-components vaccines, the experimental tri-components rDTaP absorbed to alum showed an ultra-small amount of 0.0066 IU/mL. CHO cell clustering was observed from 4 IU/mL in all groups. LP tests showed that neutrophils and lymphocytes were in the normal range in all groups immunized with the two components vaccine. However, in the tri-components control DTaP vaccine group, as well as two- and tri-components rDTaP with beta-glucan group, a higher monocyte count was observed 3 days after vaccination, although less than 2 times the normal range. In the MWG test, both groups showed changes less than 20% in body temperature and body weight before the after the final immunizations. Inflammatory cytokines within the muscle at the injection site on day 3 after intramuscular injection revealed no significant response in all groups. Conclusion: There were no findings associated with residual PTx, and no significant differences in both local and systemic adverse reactions in the novel rDTaP vaccine compared to existing available DTaP vaccines. The results suggest that the novel rDTaP vaccine is safe.