• Title/Summary/Keyword: Dip Brazing

Search Result 4, Processing Time 0.024 seconds

Waveguide Broad-Wall Slot Array Monopulse Antenna for Millimeter-Wave Seeker Using Dip Brazing Method (딥 브레이징 제작 기법을 이용한 밀리미터파 탐색기용 도파관 광벽 슬롯 배열 모노펄스 안테나)

  • Baek, Jong-Gyun;Jung, Chae-Hyun;Lee, Kook-Joo;Park, Chang-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.1020-1026
    • /
    • 2015
  • In this paper, the design of longitudinal shunt slot array monopulse antenna in the broad wall of waveguide for Ka band millimeter-wave seeker, Dip-Brazing method for fabrication and experiment results are presented. The proposed antenna consists of radiating slots by using Elliot's array synthesis procedure, probe-exciting feed structure for improving the return loss bandwidth and monopulse comparator. Element weigthings in the array have been calculated by continuous Taylor aperture distribution. Also, the simulation tool has been used to characterize the individual isolated slot, which has subsequently been used in Elliot's method to design the slot array efficiently. The designed antenna is fabricated using Dip-Brazing method. The gain of measured antenna is 28.4 dBi. Antenna beamwidth and side lobe levels are similar to the design result we expect.

DEVELOPMENT AND REPAIR OF LAMINATE TOOLS BY JOINING PROCESS

  • Yoon, Suk-Hwan;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.402-407
    • /
    • 2002
  • Laminate tooling process is a fast and simple method to make metal tools directly for various molding processes such as injection molding in rapid prototyping field. Metal sheets are usually cut, stacked, aligned and joined with brazing or soldering. Through the joining process, all of the metal sheet layers should be rigidly joined. When joining process parameters are not appropriate, there would be defects in the layers. Among various types of defects, non-bonded gaps of the tool surface are of great importance, because they directly affect the surface quality and dimensional accuracy of the final products. If a laminate tool with defects has to be abandoned, it could lead to great loss of time and cost. Therefore a repair method for non-bonded gaps of the surface is essential and has important meaning for rapid prototyping. In this study, a rapid laminate tooling system composed of a CO2 laser, a furnace, and a milling machine was developed. Metal sheets were joined by furnace brazing, dip soldering and adhesive bonding. Joined laminate tools were machined by a high-speed milling machine to improve surface quality. Also, repair brazing and soldering methods of the laminates using the $CO_2$ laser system have been investigated. ill laser repair process, the beam duration, beam power and beam profile were of great importance, and their effects were simulated by [mite element methods. The simulation results were compared with the experimental ones, and optimal parameters for laser repair process were investigated.

  • PDF

Design of Optimized Two Baseline Waveguide Slot Array Antenna for Interferometric Radar Altimeter (기저선이 최적화된 간섭계 레이다 고도계용 도파관 슬롯 배열 안테나 설계)

  • Yoon, Nanae;Kim, Jihyung;Kim, Jinsu;Jang, Jonghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • In this paper, the compact waveguide slot array antenna for interferometric radar altimeter is proposed. The proposed antenna structure consist of corrugation structure which is applied between each channel to improve isolation, three-channel waveguide slot array antenna and feeder. In addition, to reduce the occurrence of phase ambiguity, the baseline spacing of the three-channel antenna is analyzed and the results are applied to the design. For compact design, reduced height and SMP connector structure are used and the dip brazing method which is the conjugation method after dipping to flux is used for the fabrication of the lightweight antenna. The measurement result of the proposed antenna shows less than 1.41 : 1 (VSWR) and 48.3 dBc (isolation). The antenna gain is higher than 20.2 dBi and the side lobe levels are lower than 18.8 dB (vertical plane) and 10.0 dB (horizontal plane).

Vibration Fatigue Life for Slot Array RF Antenna Applied to Small Aviation Platform (적층제조 공법이 적용된 소형 항공 플랫폼용 슬롯 배열 초고주파 안테나의 진동피로수명평가에 대한 연구)

  • Kim, Ki-Seung;Kim, Hyo-Tae;Choi, Hye-Yoon;Jung, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • Sensors are applied to small aviation platforms for various purposes. Radio frequency (RF) antennas, which are representative sensors, are available in many forms but require the application of slot array RF antennas to ensure high performance and designation. Slot RF array antennas are applied to dip brazing techniques, but the yield and production time are determined by the proficiency of production personnel in a labor-intensive form. Unmanned aerial vehicles or drones, which are representative small aviation platforms, are continuously exposed to various random vibrations because propellers and multiple power sources are used in them. In this study, the fatigue life of slot array RF antennas applied with additive manufacturing was evaluated through the cumulative damage method (Miner's rule) in a vibration environment with a small aviation platform. For the evaluation, an S N curve obtained from a fatigue strength test was used.