• Title/Summary/Keyword: Dioxide nitrogen

Search Result 550, Processing Time 0.027 seconds

Preparation and Characterization of Visible Light-Sensitive N-doped TiO2 Using a Sol-gel Method (Sol-gel법을 이용한 백색도가 높은 가시광 응답형 N-doped TiO2 제조 및 특성 평가 연구)

  • Lee, NaRi;Yu, Ri;Kim, Tae Kwan;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.477-482
    • /
    • 2017
  • Nitrogen-doped titanium dioxide (N-doped $TiO_2$) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped $TiO_2$ is prepared by the sol-gel method using $NH_4OH$ and $NH_4Cl$ as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped $TiO_2$ samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% $NH_4Cl$ produces the best physical properties. As per the UV-vis analysis results, the N-doped $TiO_2$ exhibits a higher visible-light activity than the undoped $TiO_2$. The wavelength of the N-doped $TiO_2$ shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is $600^{\circ}C$. The coloration and phase structure of the N-doped $TiO_2$ are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).

Characteristics of Acidic Gas Emissions from Combustion with Preblending of Coal and Sludge (석탄과 슬러지의 예혼합연소에 따른 산성가스 배출특성)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Min, Hyo-Ki;Lee, Sang-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Using dried sludge as a secondary fuel of a coal-fired power plant is proposed as an alternative option for sludge disposal. Because elemental contents of sludge are different from those of coal, different levels of acidic gas emissions are expected from the co-combustion of sludge with coal. In this study, sludge samples were obtained from 7 sewage treatment plants in Korea. Each sludge sample was combusted together with coal in a lab-scale combustor, and the concentrations of nitrogen oxides ($NO_x$), sulfur dioxide ($SO_2$), hydrogen chloride (HCl), chlorine ($Cl_2$) in the flue gas were analyzed. Compared to the combustion of coal only, $NO_x$ concentration was slightly higher in the flue gas from the co-combustion of coal and sludge. $SO_2$ emission increased with the combustion of sludge due to the higher content of sulfur in sludge than in coal. For most of the tested samples, the concentrations of HCl and $Cl_2$ were varied depending on the chlorine content in the sludge sample.

Correlations Between the Incidence of National Notifiable Infectious Diseases and Public Open Data, Including Meteorological Factors and Medical Facility Resources

  • Jang, Jin-Hwa;Lee, Ji-Hae;Je, Mi-Kyung;Cho, Myeong-Ji;Bae, Young Mee;Son, Hyeon Seok;Ahn, Insung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.48 no.4
    • /
    • pp.203-215
    • /
    • 2015
  • Objectives: This study was performed to investigate the relationship between the incidence of national notifiable infectious diseases (NNIDs) and meteorological factors, air pollution levels, and hospital resources in Korea. Methods: We collected and stored 660 000 pieces of publicly available data associated with infectious diseases from public data portals and the Diseases Web Statistics System of Korea. We analyzed correlations between the monthly incidence of these diseases and monthly average temperatures and monthly average relative humidity, as well as vaccination rates, number of hospitals, and number of hospital beds by district in Seoul. Results: Of the 34 NNIDs, malaria showed the most significant correlation with temperature (r=0.949, p<0.01) and concentration of nitrogen dioxide (r=-0.884, p<0.01). We also found a strong correlation between the incidence of NNIDs and the number of hospital beds in 25 districts in Seoul (r=0.606, p<0.01). In particular, Geumcheon-gu was found to have the lowest incidence rate of NNIDs and the highest number of hospital beds per patient. Conclusions: In this study, we conducted a correlational analysis of public data from Korean government portals that can be used as parameters to forecast the spread of outbreaks.

Influence of Amine Surface Treatment on Carbon Dioxide Adsorption Behaviors of Activated Carbon Nanotubes (아민 처리가 탄소나노튜브의 이산화탄소 흡착거동에 미치는 영향)

  • Jang, Dong-Il;Cho, Ki-Sook;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.658-662
    • /
    • 2009
  • In this work, the amine-treated activated carbon nanotubes (A-MWNTs) were used to investigate the $CO_2$ adsorption behaviors. A-MWNTs were prepared by impregnation with amine in methanol after chemical activation methods using a KOH. The characteristics of amine-treated A-MWNTs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, desorption isotherms at 77 K. The specific surface area and pore volume of the A-MWNTs were analyzed by BET equation, BJH method, and t-plot method. $CO_2$ capture capacity as a function of temperature was measured by temperature programmed desorption (TPD). From the results, the amine treatment increased the basicity and nitrogen content of the A-MWNTs. The $CO_2$ adsorption capacity of the amine-nontreated A-MWNTs showed the highest value at room temperature and then greatly decreased with increasing the temperature. However, the amine-treated A-MWNTs presented a softer slope with temperature compared to the amine-nontreated ones. It was due to the strong interactions between $CO_2$ and amino groups presented on the carbon surfaces studied.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Organic Matters, Adsorption and Photo-oxidation at Nitrogen Back-flushing (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 질소 역세척 시 유기물 및 흡착, 광산화의 영향)

  • Hong, Sung Taek;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • The effect of humic acid (HA), and the roles of microfiltration (MF), PES (polyethersulfone) beads adsorption, and photo-oxidation were investigated in hybrid process of ceramic MF and PES beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment. Those were compared and studied in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). Because membrane fouling increased dramatically as decreasing HA, $R_f$ increased and J decreased, and finally $V_T$ was the highest at 2 mg/L HA. In the experiment to investigate the roles of photo-oxidation and adsorption at humic acid 4 mg/L and 6 mg/L. In both conditions, $R_f$ was the lowest and $V_T$ was the highest in MF + $TiO_2$ + UV process. The average treatment efficiencies of turbidity and dissolved organic matters were the highest in MF + $TiO_2$ + UV process, too.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

The Effect of Rapid Freeze Pretreatment on Grinding of Organic Ion Exchange Resins (금속동결 전처리에 의한 유기이온 교환수지의 분쇄효과)

  • Yim, Sung-Pal;Kim, Joun-Hyeong;Son, Jong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • The effect of a rapid freeze pretreatment of organic ion exchange resins on their grinding properties was studied. It was found that the structure of ion exchange resins was defected by freezing pressure formed in the process of rapid freezing. The defected resins didn't recover their own structure after thawing and those could be easy to be broken at room temperature by small force. Therefore, organic ion exchange resins could be ground readily at room temperature after rapid-freezing the fully swelled resins using by solid carbon dioxide, or liquid nitrogen. The rapid freeze pretreatment of cation exchange resins was very effective on grinding in particular. However, the effect of the pretreatment of anion exchange resins on grinding was less than that of cation exchange resins. In case of anion exchange resins, the ionic form of affected the grindability remarkably.

  • PDF

Nitration of Chlorobenzenes with NO2-O3 (이산화질소-오존을 이용한 클로로벤젠들의 니트로화 반응)

  • Lee, Bon-Su;Chung, Kyoo-Hyun;Lee, Won-Heui;Kim, Young-Su;Kim, Tae-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.530-535
    • /
    • 1996
  • Nitrochlorobenezenes are used as intermediates for dyes, pharmaceuticals and perfumes. By far the most common industrial nitration process employs a mixture of nitric acid and sulfuric acid. Due to water formed in the reaction, the mixed acid nitration requires subsequent separation of spent acid, mainly dilute sulfuric acid. In the stream of ozone, nitrogen dioxide can be used as a nitrating agent for the nitration of chlorobenzene. With 6eq of $NO_2$ and 1.0eq/hr of ozone flow, the mononitration of chlorobenzene ended within 3hr at $0^{\circ}C$ while the dinitration of chlorobenzene did in 12hr. This method can be employed for the nitration of some aromatic compounds to reduce pollutants from the present mixed-acid process.

  • PDF

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

Effects of Atmospheric Composition Substitution and Pressure on Soot Formation of Jet-A1 Droplet Flames (대기조성 치환 및 압력이 Jet A1 액적화염의 매연입자 생성에 미치는 영향에 관한 연구)

  • Nam, Won-Sik;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, the soot formation characteristics of Jet-A1 liquid fuel droplet flames were investigated by measuring the soot concentration under atmospheric conditions similar to the working environment of the Korea Space Launch Vehicle (KSLV) To obtain the desired atmospheric conditions, the oxygen concentration in the combustion chamber was maintained at 30% and the pressure was varied between 0.1 and 0.06 MPa. The full-field light extinction technique was used to measure the concentration of soot particles generated by applying the identical to 2-mm-diameter Jet-A1 fuel droplets. The soot concentration of the Jet-A1 droplet flames was the highest in the nitrogen-substituted atmosphere and the lowest in the carbon dioxide-substituted atmosphere, despite the pressure. the pressure was decreased the measured soot concentrations reduced as a function of Pn.