• Title/Summary/Keyword: Dioxide nitrogen

Search Result 550, Processing Time 0.045 seconds

Physical Propertise of Non-Cement Matrix with Red Mud (레드머드를 혼입한 무시멘트 경화체의 물리적 특성)

  • Kwon, Hyeong-Soon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.93-94
    • /
    • 2023
  • Through the industrial revolution that began in the 18th century, the amount of carbon dioxide in the atmosphere increased rapidly as humans used fossil energy such as coal and oil as fuel for steam engines and factory machines. The amount of carbon dioxide emitted while producing cement, the main material of concrete used in construction, is large enough to account for 5-8% of the world's carbon dioxide emissions. In this study, Non cement-based matrix were used to reduce carbon dioxide emissions from cement production. Red mud is an industrial by-product generated in the manufacturing process of aluminum hydroxide using bauxite, and more than 120 million tons are produced worldwide. In addition, red mud is a porous material that can be physically adsorbed, and causes a photocatalytic reaction of TiO2 to remove harmful substances such as nitrogen oxide formaldehyde in the air and chemically adsorbs ammonia and hydrogen sulfide. Therefore, this study aims to examine the physical properties of the matrix by mixing red mud, an industrial by-product with good adsorption performance, into the Non cement-based matrix.

  • PDF

Changes in the CO2 and amount of mycelium growth of the liquid spawn on Flammulina velutipes (팽나무버섯 액체 종균 배양시 이산화탄소 농도와 균사 생장량 변화)

  • Shim, Kyu-Kwang;Yoo, Young-Jin;Koo, Chang-Duck;Kim, Young-Seok;Kim, Myung-Koon
    • Journal of Mushroom
    • /
    • v.10 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • In this study, to produce Flammulina velutipes mushroom liquid spawn efficiently and effectively the effects of explosive aeration (supplying air with tiny bubbles) of the liquid culture medium on carbon dioxide concentration and residual sugar content in the medium on carbon dioxide concentration and residual sugar contentin the medium were measured. Carbon dioxide concentrations were measured at the outlet of the incubator. On the third day the explosive aeration greatly increased mycelial growth of the liquid spawn, and carbon dioxide concentration also greatly increased but decreased after 5 days. Free sugar contents in the liquid culture consistantly decreased up to 7 days and thereafter was not detected. The weight of the mycelia were maintained similar levels after 3 days. Total nitrogen content in the liquid medium constantly decreased during the 11days of explosive aeration. The content of free sugars in 7 days of culture was the lowest level, thus the inoculum incubated for 6~7 days was thought to be the most effective. Carbon dioxide concentration measurement at the outlet of the container during the liquid spawn incubation required low cost but was efficient to estimate the degree of mycelial growth to be used as a simple indicator.

Estimation of Ventilation and Generation Rates Using Nitrogen Dioxide Measurements of Indoor and Outdoor in Houses (주택 실내.외 이산화질소 측정을 이용한 환기량 및 발생량 추정)

  • Yang, Won-Ho;Im, Sung-Guk;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1069-1073
    • /
    • 2008
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and $NO_2$ generation rate were estimated. Mean of ventilation rate was 1.41 ACH in houses, assuming a residential N02 deposition constant of 0.94 $hr^{-1}$. Mean generation rate of $NO_2$ was 16.5 ppbv/hr. According to house characterization, inside smoking and family number were higher $NO_2$ generation rates, and apartment was higher than single-family house. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

Assessment of Personal Exposure to Nitrogen Dioxide in Primary Schoolchildren

  • Cho Yong-Sung;Lee Jong-Tae;Kim Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • This study was designed to assess the level of nitrogen dioxide from several microenvironments including inside the home, outdoors near the home, inside the school, outdoors near the school, and on the road for 42 primary schoolchildren during the month of December 2002 in Seoul, Korea. The average personal, indoor, outdoor $NO_2$ levels, and indoor/outdoor ratio were 45.08 ppb, 27.89 ppb, 30.96 ppb, and 0.89, respectively. The indoor $NO_2$ concentrations were significantly associated with the presence of a smoker with a gas stove. The estimated personal $NO_2$ exposure using time-weighted average equation of $34.64{\pm}5.29$ ppb was significantly lower than the measured personal exposure of $45.08{\pm}5.50$ ppb. Our results indicate that indoor $NO_2$ levels were associated with the presence of a smoker and a gas stove. Moreover, personal $NO_2$ exposure with a gas stove in the house was significantly higher than those without a gas stove.

Efficiency Evaluation of Adsorbents for the Removal of VOC and NO2 in an Underground Subway Station

  • Son, Youn-Suk;Kang, Young-Hoon;Chung, Sang-Gwi;Park, Hyun-Ju;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • Adsorbent combination studies have been carried out to remove nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs: BTEX) out of a subway environment characterized by high flow and low concentration. Optimal conditions for the high removal efficiency of the concerned target compounds were obtained through testing a series of control factors such as adsorbent sorts, thicknesses, and superficial velocity. It was found that the efficiencies increased as the specific surface area of activated carbon and its thickness increased, and external void fraction decreased. Furthermore, mixed activated carbon with granular and constructed contents was extensively tested to reduce pressure drop through the carbon bed. It was found that the performance of higher contents of granular activated carbon was better than that of higher contents of the constructed carbon. When the mixed carbon was applied to the subway ventilation system in order to eliminate $NO_2$ and VOC simultaneously, the removal efficiencies were found to be 75% and 85%, respectively.

Simultaneous NO2 and RSP Measurements Using Filtration Method (필터방식을 이용한 이산화질소 및 호흡성 분진의 동시 측정)

  • Yang, Won-Ho;Im, Sung-Kuk;Kim, Moon-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.148-152
    • /
    • 2008
  • Coated filters were developed to replace the glass impinger methods that use reagent solutions. The purpose of this study was to simultaneously measure nitrogen dioxide ($NO_2$) and respirable suspended particles (RSP) by a filtration method with a cyclone connected to a pump. A first pre-filter for RSP and second filter for $NO_2$, which was soaked in a TEA (Triethanolamine) solution, were loaded into a filter cassette with a pump flow rate of 1.7 l/m. After sampling, the TEA soaked filter was removed from the cassette, placed in a large test tube (10 ml), mixed, and allowed time to develop. The absorbance (abs) of the diazo compound of the $NO_2$ and N-(1-Napthylethylenediamine dihydrochloride) in the color reagent was measured at 545 nm on a spectrophotometer. The collection efficiency(%) of $NO_2$ by each 3 filter soaked in TEA solution and used in the cyclone with a pump flow rate 1.7 l/m was $89{\pm}3%$ and the correlation coefficient between the true $NO_2$ concentration and that determined by the TEA soaked filters was 0.993(p<0.001).