• Title/Summary/Keyword: Diols

Search Result 80, Processing Time 0.027 seconds

Effects of low molecular weight Diols as Chain Extender on the Mechanical Properties of HTPB Urethane Elastomers (저분자량 디올이 체인 연장제로서 HTPB 우레탄 탄성 중합체의 기계적 성질에 미치는 영향)

  • Myong Pyo Hong;Man Gyoon No;Yong Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 1983
  • The mechanical properties (tensile strength, 100% modulus and hardness) of the urethane elastomers prepared from hydroxyl terminated polybutadiene (HTPB), several low molecular weight diols (ethylene glycol, 1, 3-propane diol, 1,4-butane diol, 1,5-pentane diol and 1,6-hexane diol) and two kinds of diisocyanates(TDI: toluene diisocyanate, IPDI: isophorone diisomechanical properties were enhanced for the increases of the concentrations of the urethane group, as predicted. In case of TDI, when the mechanical properties of the elastomers were plotted patterns were observed, which can be explained by hydrogen bondings depending on the number of the methylene carbons. But the mechanical properties of the elastomers derived from IPDI had decreasing curves against the number of methylene carbons in low molecular weight diols, without the characteristic zigzag patterns.

  • PDF

Fluorinated Esters Derived from Terpenes

  • Joseph D. Park;Robert L. Settine
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.128-130
    • /
    • 1964
  • Fluorinated acid chlorides in the C$_3$ to C$_9$ range were reacted with diols prepared from terpene diacids to give good yields of potentially useful esters. These esters were shown to be of greater stability and low temperature properties than those prepared from fluorinated alcohols and corresponding terpene diacids by direct esterification.

  • PDF

A Facile Reduction of Acid Anhydrides with Borane in the Presence of Lithium Chloride in Tetrahydrofuran

  • Yoon, Nung-Min;Lee, Whee-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.296-298
    • /
    • 1986
  • Carboxylic acid anhydrides are rapidly reduced with borane-lithium chloride (1:0.1) system to give corresponding alcohols (diols in the case of cyclic anhydride) quantitatively in tetrahydrofuran at room temperature. This reagent tolerates aromatic acid ester, nitro, and halide functional groups, however competitively reduces aliphatic ester and nitrile groups.

Synthesis of Dinitro ${\alpha},{\omega}$--Diols from ${\alpha},{\omega}$--Diols (${\alpha},{\omega}$-디올로부터 디니트로 ${\alpha},{\omega}$--디올의 합성)

  • Kyoo-Jyun Chung;Il-Gyo Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.244-248
    • /
    • 1993
  • Nitroalcohols were prepared by a substitution reaction from the corresponding bromoalcohols. The second nitro group was introduced via different methods depending on the carbon chain length. 3,3-Dinitro-1-propanol was obtained by an intramolecular varient of the alkaline nitration method. Whereas 5,5-dinitro-1-pentanol was given by the catalytic oxidative nitration. 3,3-Dinitro-1-propanol and 5,5-dinitro-1-pentanol were converted to 3,3-dinitro-1,6-hexanediol and 4,4-dinitro-1,8-octanediol via Michael reaction with acrolein followed by the reduction of the resulting aldehydes. Acetyl group was a good protecting group for the substitution reaction while THP was for the catalytic oxidative nitration.

  • PDF

Synthesis of the Polysaccharide, (1 $\longrightarrow$ 5)-$\alpha$-D-Ribofuranan and Its Catalytic Activities for the Hydrolysis of Phosphates and the Cleavage of Nucleic Acids

  • Han, Man-Jung;Yoo, Kyung-Soo;Kim, Young-Heui;Kim, Hong-Youb;Shin, Hyun-Joon;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.359-366
    • /
    • 2004
  • The polysaccharide, (1\longrightarrow5)-$\alpha$-D-ribofuranan, was synthesized by a cationic ring-opening polymerization of 1,4-anhydro-2,3-di-O-benzyl-$\alpha$-D-ribopyranose with the aid of boron trifluoride etherate and subsequent debenzylation. This polysaccharide catalyzed the hydrolysis of ethyl p-nitrophenyl phosphate, uridylyl(3'\longrightarrow5')uridine ammonium salt, and 4-tert-butylcatechol cyclic phosphate N-methyl pyridinium. The polymer also catalyzed the cleavage of nucleic acids (DNA and RNA). The hydrolysis of ethyl p-nitrophenyl phosphate in the presence of the polymer was accelerated by 1.5 ${\times}$ 10$^3$ times relative to the uncatalyzed reaction. The catalytic activity was attributable to the vic-cis-diols of the riboses being located inside the active center that is formed by polymer chain folding; these diols form hydrogen bonds with two phosphoryl oxygen atoms of the phosphates so as to activate the phosphorus atoms to be attacked by nucleophile ($H_2O$).

The Influence of Curing Conditions on the Composition of Essential Oil of Burley Tobacco Leaves (버어리종 잎담배의 건조조건이 정유성분 조성에 미치는 영향)

  • 배성국;김도연;이윤환;김영회
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • This study was performed to investigate the influence of curing conditions on the composition of essential oil during curing process of burley tobacco leaves. The curing conditions were the primed curing in vinyl house (house-curing), air-curing barn (air-curing) and stalk-curing in conventional curing house (stalk-curing). Total 90 compounds are identified from the steam volatile oils of harvest and cured tobacco leaves by GC and GC-MS, respectively. The major components were neophytadiene, hexadecanoic acid, 3,8,13-duvatriene-1,5-diols, oxide-9-methylene-3,13-duvadienols, solanone, megastigma-4,6,8-trien-3-ones, phenylacetaldehyde, $\beta$-phenylethyl alcohol, indole, dihydroactinidiolide and phytol. The amount of alcoholic compounds was decreased more than approximately 50% in cured leaves without regard to the curing conditions. $\beta$-Phenylethyl alcohol and 3,8,13-duvatriene-1,5-diols were decreased more in air curing and stalk curing than in house curing. The amounts of phenylacetaldehyde, solanone, $\beta$-damascone, $\beta$ -damascenone, oxysolanone and megastigma-4,6,8-trien-3-ones as ketonic compounds, dihydroactinidiolide and indole as miscellaneous compounds in air-cured and stalk-cured tobacco leaves were 2 times higher than those in house-cured leaves, while esteric and acidic compounds were not changed largely in content by curing conditions.

Inhibition of Side Reactions Forming Dimers of Diols in the Selective Hydrogenation of Methacryl Aldehyde (메타아크릴 알데히드의 선택적 수소화에서 2가 알코올의 이합체 형성 부반응 억제효과)

  • Kook-Seung Shin;Mi-Sun Cha;Kyoung-Ku Kang;Chang-Soo Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2023
  • The homogeneous catalyst, Ru-MACHO-BH, selectively performs hydrogenation reactions only on the carbonyl group of α, β-unsaturated aldehyde compounds with extremely high reactivity and selectivity. However, the hydrogenation of α, β-unsaturated aldehydes involves a heterogeneous Diels-Alder reaction, resulting in the formation of significant amounts of byproducts, such as dimers. In this study, we used the Ru-MACHO-BH catalyst (Carbonyl hydrido (tetrahydroborato) [bis (2-diphenyl phosphino ethyl) amino] ruthenium(II)) to selectively hydrogenate the carbonyl group of a specific type of α, β-unsaturated aldehyde called methacryl aldehyde, leading to the synthesis of methallyl alcohol. Simultaneously, we applied diols to inhibit the formation of byproducts. The results demonstrate that monoethylene glycol can significantly reduce the formation of diols. Based on these results, we effectively suppressed the formation of dimers containing vinyl groups in methacryl aldehyde by using hydroquinone, which can efficiently inhibit the chemical interaction of vinyl groups. Consequently, the conversion rate of methacryl aldehyde was increased. Ultimately, by reducing the amount of the expensive homogeneous catalyst Ru-MACHO-BH to 1/10, we achieved a selectivity of over 90% and a yield of over 80% for the desired product, methallyl alcohol. These results provide a method to minimize yield reduction while reducing the usage of expensive catalysts, thereby improving cost-effectiveness. We expect that the reaction could be applied to various kinds of selective hydrogenation and has been successfully run on an industrial scale.