• Title/Summary/Keyword: Dinosaur trace fossil

Search Result 2, Processing Time 0.014 seconds

Physical Properties of Sedimentary Rocks containing Dinosaur Trace Fossils in the Haenam: A Relationship with Chert Content (해남 공룡화석 지 퇴적암의 물리적 성질: 쳐트 함량과의 관계)

  • 조현구;김수진;장세정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • The physical properties of Uhangri sedimentary rocks were investigated to provide the conservation strategy of Dinosaur trace fossil in the Haenam. The porosity, void ratio, dry density, water content, and degree of saturation were calculated according to the proper laboratory experiments for 9 sedimentary specimens. The flexural strength (or modulus of rupture) and thermal expansion coefficient were measured using the universal testing machine and dilatometer, respectively. The Uhangri sedimentary rocks have very low porosity, void ratio, and water content. The flexural strength of shales are 24.16~42.84, and those of sandstones are 16.34~ $43.52N/mm^2$, which are much weaker than common sedimentary rocks. The very low flexural strength of sedimentary rocks despite very low porosity, is ascribed to fine fissures in the rocks. The thermal expansion coefficient of rocks were $14.7~21.3\Times10^{-6 }$, which are 2~2.5 times as high as alumina and about 10 times as high as talc. As the content of chert in the sandstone increases, the porosity, void ratio, and water content increase, while the dry density and degree of saturation decrease. The chert-bearing sandstone have higher porosity and thermal expansion coefficient, and lower flexural strength compared to those free of chert.

Understanding on the Fossilization of Middle School Students (화석 형성 과정에 대한 중학생들의 이해)

  • Hwang, Koo-Geun;Cho, Kyu-Seong;Huh, Min
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.305-316
    • /
    • 2009
  • Experiments to explain fossilization have been introduced in elementary and middle school science textbooks. Most of them have explained the processes by the mold and cast formed by imprint of bivalve or leaf. The processes explained in the textbooks are more similar to that of trace fossil than body fossil, because the external molds from experiment are imprints after the model was taken off. However fossils of the figures in the textbooks are mostly body fossils. Therefore, the students may be willing to equate the experiment process with the fossilization of the body fossils. The misconceptions were confirmed in this study by the questionnaire which asked 9th grade students on this subject. Many students thought that the body fossils were fossilized imprints and the fossils of terrestrial organism were formed on land without transportation, that is, they did not understand well about biostratinomy and crustal movement. The misconception about the environment in which fossils formed was already reported in a survey on the elementary school students, but has not revised until ninth grade. Therefore, to remove the misconception related to the fossilization, the fossil models in the experiments may be replaced by trace fossils, or new experiments for body fossil should be designed.