• Title/Summary/Keyword: Dimple

Search Result 288, Processing Time 0.032 seconds

Tribological Characteristics in $40{\mu}m$ Dimple Pattern for Hexagonal Array (Hexagonal 배열 $40{\mu}m$ Dimple 패턴의 트라이볼로지적 특성)

  • Choi, Won-Sik;Chae, Young-Hoon;Umehara, Noritsugu
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • 본 연구에서는 pin-on-disk 마찰 시험기를 통하여 Hexagonal 배열 $40{\mu}m$ Dimple 패턴의 효과를 실험하였다. 마찰 실험은 미끄럼 속도가 $0.06{\sim}0.34m/s$로 하였으며 마찰하중은 $20{\sim}100\;N$의 범위로 하였고, Dimple의 밀도는 $10{\sim}25%$의 범위로 제작하여 실험을 행하였다. 일반적으로 속도가 증가하고 하중이 감소할수록 마찰계수는 감소하는 경향을 나타내었으며, Dimple에 의한 마찰저감 효과는 속도가 $0.14{\sim}0.26m/s$의 범위에서 나타났다. $40{\mu}m$ Hexagonal 배열 Dimple 패턴의 마찰 특성에서는 밀도가 12.5%에서 가장 좋은 경향을 나타내었다.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel (딤플이 설치된 채널에서 레이놀즈 수 및 딤플 깊이에 따른 유동 및 열전달 특성)

  • Ahn, Joon;Lee, Young-Ok;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3253-3258
    • /
    • 2007
  • A large eddy simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices.

  • PDF

Design Optimization of Dimple Shape to Enhance Turbulent Heat Transfer (난류열전달 증진을 위한 딤플형상의 최적설계)

  • Choi Ji-Yong;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.700-706
    • /
    • 2006
  • This study presents a numerical procedure to optimize the shape of dimple surface to enhance turbulent heat transfer in a rectangular channel. The response surface based optimization method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. full factorial method is used to determine the training points as a mean of design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

Influence on a density of micro-scale dimple for surface texturing on friction control (마찰제어를 위한 Surface texturing의 Micro-scale dimple 밀도영향)

  • Chae, Young-Hun;Kim, Seock-Sam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.945-950
    • /
    • 2004
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction.Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

  • PDF

Drag Reduction of Cylinder with Dimple (딤블 있는 원주의 항력 감소)

  • Ro, Ki-Deok;Park, Ji-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.502-507
    • /
    • 2000
  • Fundamental studies on the drag reduction of the circular cylinder having dimple were conducted by the measurement of the fluid force acting on the cylinder and by the flow visualization around the cylinder. The drag coefficients were changed by the shape and the space for the arrangement of the dimple. The drag of the cylinder was reduced about 50% by the proper arrangement of the dimple. The flowfield around the cylinder having dimple, which was the minimum drag, was visualized by the hydrogen bubble technique. In this case, the separation points were moved rearward and the wake region was small in comparison with the cylinder having no dimple.

  • PDF

Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition (혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성)

  • Chae Young-Hun;Kim Seock-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

Effects of dimple/protrusion array on heat transfer coefficients in rectangular wavy duct (주름진 덕트에서 딤플/돌출 형상이 열전달계수에 미치는 영향)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2352-2356
    • /
    • 2008
  • Heat transfer and performance characteristics have been investigated for a rectangular wavy duct with dimple or protrusion arrays. The test duct was 15mm in height and 105mm wide. The print diameter of the dimple/protrusion wall was 12.99mm and the depth/height of the dimple/protrusion was 3.75mm. Local heat transfer coefficients on the dimple/protrusion wall were measured using a transient TLC technique. The Reynolds number was varied from 3,000 to 10,000. For the wavy duct tested in this study, adverse static pressure characteristics occurred at turning region of the wavy duct due to secondary flows. For the wavy duct with protrusion array, higher heat transfer enhancement level of 7.4 times than smooth straight case in maximum was obtained at low Reynolds number due to the high heat transfer enhancement by vortex flows. Also, the protrusion array increased the performance level of 3.0 at low Reynolds number of 3,000.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

A numerical study for optimizing the thermal and flow performance in the channel of plate heat exchanger with dimples (딤플이 있는 판형 열교환기 관내측 열유동 최적화)

  • 이관수;시종민;정길완
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.700-708
    • /
    • 1999
  • The optimum dimple shape and arrangement in the channel of a plate heat exchanger with staggered dimples are proposed in this study. Four important geometric parameters are selected as design variables, the pressure drop and heat transfer characteristics are examined in the channel of plate heat exchangers. The optimization is accomplished by minimizing the global criterion function which consists of the correlations of Nusselt number and pressure drop. The optimum geometric parameters were found at the dimensionless dimple distance (L) of 0.272, the dimensionless dimple angle ($\beta$) of 0.44, the dimensionless dimple volume (V) of 0.106 and the dimensionless dimple pitch (G) of 0.195. It is found that the heat transfer and pressure drop of the optimum model are increased by approximately 227.9% and 32.9%, respectively, compared to those of the base model.

  • PDF