• Title/Summary/Keyword: Dimensioning

Search Result 98, Processing Time 0.022 seconds

A New Optimization Model for Designing Broadband Convergence Network Access Networks

  • Lee Young-Ho;Jung Jin-Mo;Kim Young-Jin;Lee Sun-Suk;Park No-Ik;Kang Kuk-Chang
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1616-1640
    • /
    • 2006
  • In this paper, we deal with a network optimization problem arising from the deployment of Ethernet-based BcN access network. BcN convergence services require that access networks satisfy QoS measures. BcN services have two types of traffics: stream traffic and elastic traffic. Stream traffic uses blocking probability as a QoS measure, while elastic traffic uses delay factor as a QoS measure. Incorporating the QoS requirements, we formulate the problem as a nonlinear mixed-integer programming model. The proposed model seeks to find a minimum cost dimensioning solution, while satisfying the QoS requirement. We propose tabu search heuristic algorithms for solving the problem, and simulate tabu result. We demonstrate the computational efficacy of the proposed algorithm by solving a network design problem.

  • PDF

Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구)

  • 이창훈;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz;Kravanja, Stojan;Klansek, Uros
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1163-1192
    • /
    • 2016
  • This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

Natural Sections in Product Design

  • Page, Tom;Thorsteinsson, Gisli;Ha, Joong-Gyu
    • International Journal of Contents
    • /
    • v.6 no.3
    • /
    • pp.71-82
    • /
    • 2010
  • The golden ratio is a mysterious number that surprisingly appears in science, physics, mathematics, as well as in nature. The number 1.618 seems to be a universal constant, and crops up whenever the subject is of beauty or elegance. Beautiful flowers and sea shells and also attractive people have a common number and that is 1.618 or $\varphi$ (phi). This paper does a study into the story of phi, and describes how the golden ratio is derived. Artists, architects and designers have employed the ratio into dimensioning their works of art to achieve visual appeal. Examples such as the Greek Parthenon of the Acropolis and paintings such as the Last Supper all use this magic number. An investigation was conducted among 50 people to test if looking at golden proportioning was actually appealing, or if it was just a type among overzealous enthusiasts. The results show that the golden ratio may actually be of some use.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

An Analysis of Data Traffic Considering the Delay and Cell Loss Probability (지연시간과 손실율을 고려한 데이터 트래픽 분석)

  • Lim Seog -Ku
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • There are many problems that must solve to construct next generation high-speed communication network. Among these, item that must consider basically is characteristics analysis of traffic that nows to network Traffic characteristics of many Internet services that is offered present have shown that network traffic exhibits at a wide range of scals-self-similarity. Self-similarity is expressed by long term dependency, this is contradictory concept with Poisson model that have relativity short term dependency. Therefore, first of all, for design and dimensioning of next generation communication network, traffic model that are reflected burstiness and self-similarity is required. Here self-similarity can be characterized by Hurst parameter. In this paper, the calculation equation is derived considering queueing delay and self-similarity of data traffic art compared with simulation results.

  • PDF

Evaluating C-RAN Fronthaul Functional Splits in Terms of Network Level Energy and Cost Savings

  • Checko, Aleksandra;Avramova, Andrijana P.;Berger, Michael S.;Christiansen, Henrik L.
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.162-172
    • /
    • 2016
  • The placement of the complete baseband processing in a centralized pool results in high data rate requirement and inflexibility of the fronthaul network, which challenges the energy and cost effectiveness of the cloud radio access network (C-RAN). Recently, redesign of the C-RAN through functional split in the baseband processing chain has been proposed to overcome these challenges. This paper evaluates, by mathematical and simulation methods, different splits with respect to network level energy and cost efficiency having in the mind the expected quality of service. The proposed mathematical model quantifies the multiplexing gains and the trade-offs between centralization and decentralization concerning the cost of the pool, fronthaul network capacity and resource utilization. The event-based simulation captures the influence of the traffic load dynamics and traffic type variation on designing an efficient fronthaul network. Based on the obtained results, we derive a principle for fronthaul dimensioning based on the traffic profile. This principle allows for efficient radio access network with respect to multiplexing gains while achieving the expected users' quality of service.

Hardware implementation and error analysis of an algorithm for compensating the secondary current of iron-cored current transformers (철심 변류기의 2차 전류 보상 알고리즘의 실시간 구현 및 오차 분석)

  • 강용철;김성수;박종근;강상희;김광호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.490-500
    • /
    • 1996
  • The conventional method to deal with current transformer (CT) Saturation is over dimensioning of the core so that CTs can carry up to 20 times the rated current without exceeding 10% ratio correction. However, this not only reduces the sensitivity of relays as some errors may still be present in the secondary current when a severe fault occurs, but also increases the CT size. This paper presents an algorithm for compensating the distorted secondary current of iron-cored CTs under CT saturation using the magnetization (flux-current : .lambda.-i) curve and its performance is examined for fault currents encountered on a typical 345[kV] Korean transmission system, under a variety of different system and fault conditions. In addition, the results of hardware implementation of the algorithm using a TMS320C10 digital signal processor are also presented. The proposed algorithm can improve the sensitivity of relays to low level internal faults, maximize the stability of relays for external faults, and reduce the required CT core cross-section significantly. (author). refs., figs.

  • PDF