• Title/Summary/Keyword: Dimensional model

Search Result 9,282, Processing Time 0.038 seconds

Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network

  • Wang, Su-Mei;Jiang, Gao-Feng;Ni, Yi-Qing;Lu, Yang;Lin, Guo-Bin;Pan, Hong-Liang;Xu, Jun-Qi;Hao, Shuo
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.625-640
    • /
    • 2022
  • Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

Damage Analysis of Manganese Crossings for Turnout System of Sleeper Floating Tracks on Urban Transit (도시철도 침목플로팅궤도 분기기 망간크로싱의 손상해석)

  • Choi, Jung-Youl;Yoon, Young-Sun;Ahn, Dae-Hee;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • The turnout system of the sleeper floating tracks (STEDEF) on urban transit is a Anti-vibration track composed of a wooden sleeper embedded in a concrete bed and a sleeper resilience pad under the sleeper. Therefore, deterioration and changes in spring stiffness of the sleeper resilience pad could be cause changes in sleeper support conditions. The damage amount of manganese crossings that occurred during the current service period of about 21 years was investigated to be about 17% of the total amount of crossings, and it was analyzed that the damage amount increased after 15 years of use (accumulated passing tonnage of about 550 million tons). In this study, parameter analysis (wheel position, sleeper support condition, and dynamic wheel load) was performed using a three-dimensional numerical model that simulated real manganese crossing and wheel profile, to analyze the damage type and cause of manganese crossing that occurred in the actual field. As a result of this study, when the voided sleeper occurred in the sleeper around the nose, the stress generated in the crossing nose exceeded the yield strength according to the dynamic wheel load considering the design track impact factor. In addition, the analysis results were evaluated to be in good agreement with the location of damage that occurred in the actual field. Therefore, in order to minimize the damage of the manganese crossing, it is necessary to keep the sleeper support condition around the nose part constant. In addition, by considering the uniformity of the boundary conditions under the sleepers, it was analyzed that it would be advantageous to to replace the sleeper resilience pad together when replacing the damaged manganese crossing.

Three-Dimensional Culture of Thymic Epithelial Cells Using Porous PCL/PLGAComposite Polymeric Scaffolds Coated with Polydopamine (폴리도파민으로 코팅된 다공성 PCL/PLGA 복합 폴리머 지지체를 이용한 흉선상피세포의 3차원 세포배양)

  • Seung Mi Choi;Do Young Lee;Yeseon Lim;Seonyeong Hwang;Won Hoon Song;Young Hun Jeong;Sik Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.612-622
    • /
    • 2023
  • T-cell deficiency may occur in various clinical conditions including congenital defects, cell/organ transplantation, HIV infection and aging. In this regard, the development of artificial thymus has recently been attracting much attention. To achieve this aim, the development of techniques for 3D culture of thymic stromal cells is necessary because thymocytes grown only in a 3D thymic microenvironment can be differentiated fully to become mature, immunocompetent T cells; the same cannot be achieved for thymocytes grown in 2D. This study aimed to develop a nanotechnology-based 3D culture technique using polymeric scaffolds for thymic epithelial cells (TECs), the main component of thymic stromal cells. Scanning electron microscopic observation revealed that the pores of both PCL and PCL/PLGA scaffolds were filled with TECs. Interestingly, TECs grown in 3D on polydopamine-coated scaffolds exhibited enhanced cell attachment and proliferation compared to those grown on non-coated scaffolds. In addition, the gene expression of thymopoietic factors was upregulated in TECs cultured in 3D on polydopamine-coated scaffolds compared to those cultured in 2D. Taken together, the results of the present study demonstrate an efficient 3D culture model for TECs using polymeric scaffolds and provide new insights into a novel platform technology that can be applied to develop functional, biocompatible scaffolds for the 3D culture of thymocytes. This will eventually shed light on techniques for the in vitro development of T cells as well as the synthesis of artificial thymus.

Disentangling Trade Effects of the Korea - China FTA: Trade Liberalization or Political Conflicts?

  • HuiHui Yin;Juyoung Cheong
    • Journal of Korea Trade
    • /
    • v.27 no.3
    • /
    • pp.21-42
    • /
    • 2023
  • Purpose - This paper investigates the trade effect of the Korea-China Free Trade Agreement (KCFTA) which coincides with political conflicts between the two countries due to the deployment of the Terminal High Altitude Area Defense (THAAD) in Korea. The two events occurred in the same year and both are likely to affect trade between two countries but in opposite directions. Therefore, it is crucial to distinguish between the trade effects from the KCFTA event and those from the THAAD event to evaluate the true FTA effects. However, this would be difficult when using only annual data. Accordingly, ex post studies to examine the trade effects of KCFTA are lacking in trustworthiness while many ex ante studies that conjecture the positive trade effects neglect the THAAD deployment impact. This paper aims to fill that gap. Design/methodology - Given that the KCFTA and THAAD events occurred in the same year but in different months, we use the monthly data from 2000 to 2019 of Korea's exports to bracket this period. We employ the difference-in-difference (DID) method within a gravity equation specification that uses hi-dimensional fixed effects to address various endogeneity issues and seasonal effects. We identify the net impact of KCFTA ratification from these two near-simultaneous events to quantify the effects of trade liberalization between these two countries. Findings - After isolating the THAAD effects on trade, the analysis creates a positive and statistically significant coefficient estimate of the KCFTA impact. In contrast, failing to isolate the THAAD effect produced a negative and statistically significant coefficient estimate of the KCFTA impact. Our results indicate that KCFTA independently increased Korea's exports to China by 10.2%, but that this increase was fully mitigated by the THAAD event. Further, our results verify that unobserved heterogeneity and multilateral resistance are technically difficult to account for in those estimations as that rely solely upon annual data, as this type of data are inadequate to control for the potential for endogeneity. Originality/value - This paper is one of the first studies to carefully evaluate the net trade effects of the KCFTA on Korea's largest trading partner while isolating the impact of simultaneously occurred political events that may influence trade in opposing directions. Our findings indicate that the lack of prior evidence of positive trade effects of the KCFTA when using annual data may be attributed to a failure to identify the impact of each event separately. This analysis supports using the correct modeling specification to avoid misleading conclusions when evaluating any important international trade policy.

Modeling of algal fluctuations in the reservoir according to the opening of Yeongju Dam (영주댐 개방에 따른 호내 조류 변동 모의)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Due to climate change, algal blooms frequently occur not only in Korea but also around the world, and the risk of toxicity of harmful algae has recently been issued. It is known that the representative harmful algae, cyanobacteria, are caused by the intersection of three factors: water temperature, residence time, and nutrients. In this study, water quality simulation was carried out using EFDC, a three-dimensional numerical model, to analyze the variations in water quality due to the decrease of residence time according to the opening of Yeongju Dam in Naeseong-Cheon. In fact, the concentration of chlorophyll-a in Yeongju Dam in the summer of 2021 was significant, exceeding the 'algae warning' for a long time based on the previous algae warning system. On the other hand, as a result of performing the simulation under the condition that the dam gate was completely opened, the concentration of chlorophyll-a was mostly reduced below the 'algae warning' level during the simulation period. It was confirmed that reducing the residence time by restoring the flow of Naeseong-Cheon is a way to immediately reduce algae in Yeongju Dam.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Study of the Mitigation of Algae in Lake Uiam according to the Operation of the Chuncheon Dam and the Soyang Dam (춘천댐 및 소양강댐 운영에 따른 의암호 조류 저감 연구)

  • Lee, Dong Yeol;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • In this study, the characteristics of algae mitigation according to dam operation were quantitatively analyzed for Uiam Lake, where the Chuncheon Dam is located upstream of the main stream, Uiam Dam is located downstream, and Soyang Dam is located in the tributary stream. Nine dam operation scenarios were applied to the event of the summer of 2018 (at that time an algae alert occurred) using the EFDC model, which is capable of calculating three-dimensional hydrodynamics and water quality levels such as those associated with chlorophyll-a. The dam operation scenarios were set to generate a flushing effect via discharges in the form of pulse waves from the upstream dams and by lowering the water level at the downstream dam. At Uiam Lake, the flushing effect was different depending on the operation of the dam, and the amount of algae reduction at each point was different owing to topographic characteristics and the different base water temperatures from BukHan River and Soyang River. With regard to a point located on the left bank, it was predicted that the peak level of chlorophyll-a would be reduced by approximately 50 % or more upon pulsed discharge at 50 m3/s for three days at Soyang Dam. However, for the right bank, the amount of discharge from Soyang Dam had little effect on algae mitigation. Therefore, an appropriate dam operation could be effective for algae mitigation at specific points in the water body where large dams exist upstream and downstream, such as at Uiam Lake, in an emergency situation in which algal blooms rapidly.

Analysis of Organic Carbon Mass Balance in Daecheong Reservoir Using a Three-dimensional Numerical Model (3차원 수치 모델을 이용한 대청호 유기탄소 물질수지 해석)

  • Kim, Dong Min;An, In Kyung;Min, Kyug Seo;Chung, Se Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.62-62
    • /
    • 2021
  • 산업 고도화로 인하여 복잡하고 다양한 유기물의 사용량이 증가하였으며, 공공수역 내 새로운 오염물질이 유입됨에 따라 생화학적 산소요구량(BOD) 중심의 수질평가에 한계를 나타내었다. 이후 난분해성 물질을 고려한 유기물관리 정책과 총량관리의 필요성이 제기되었고 국내 하천과 호소에서는 총 유기탄소(TOC)를 유기물 관리지표로 설정하였다. 그러나 부영양 하천과 호소에서 TOC는 외부 부하뿐만아니라 식물플랑크톤의 과잉성장에 의해 증가할 수 있는 항목이므로 TOC 관리정책 추진을 위해서는 유기물의 기원에 대한 파악이 필요하다. 특히, 국내 하천에서 나타나고 있는 난분해성 유기물 오염도의 증가 추세에 대응한 실효성 있는 유기물 오염관리 정책을 수립하기 위해서는 다양한 유기물의 근원을 정확하게 파악하는 것이 매우 중요하다. 본 연구의 목적은 금강 수계 최대 상수원인 대청호를 대상으로 3차원 수리-수질 모델을 적용하여 유기탄소 성분 별 유입과 유출, 내부생성 및 소멸량을 평가하고 저수지시스템에서의 유기탄소 물질수지를 해석하는 데 있다. 유기탄소 물질수지 해석을 위해 AEM3D 모델을 사용하였으며 2017년을 대상으로 입력자료를 구축한 후 보정을 수행하였고 2018년을 대상으로 모델을 검정하였다. 모델은 유기탄소를 입자성, 용존성, 그리고 난분해성과 생분해성으로 구분하여 모의하며 유기물질 성상별 실험결과를 이용하여 입력자료를 구축하였다. 유기탄소 물질수지 해석을 위해 4가지의 탄소성분과 조류 세포 내 탄소의 질량 변화율을 계산하였다. 이를 위해 외부 유입·유출부하율, 수체 내 생성(일차생산, 재부상, 퇴적물과 수체 간 확산) 및 소멸률(POC 및 조류 침강, DOC 무기화, 탈질)을 고려하였다. 모델은 2017년과 2018년의 물수지를 적절히 재현하였으며 저수지의 성층구조를 잘 재현해내면서 전반적인 수온, 수질을 적절하게 모의하였다. 연간 TOC 부하량 중 내부기원 부하량은 2017년 68.4 %, 2018년은 높은 강우량의 영향으로 55.0%로 산정되었다. 내부 소멸 기작 중 침전으로 인한 손실이 가장 높은 것으로 나타났으며, 2017년과 2018년 각각 31.3%, 29.0%로 나타났다. TOC의 공간분포는 Chl-a 농도 분포와 유사하게 나타났으며, 댐 설치로 형성된 정체수역은 유역의 유기물 순환에 많은 영향을 미치는 것으로 평가되었다. TOC 관리 정책 기초자료 확보를 위해서는 향후 유역-저수지 시스템을 연계한 유기물 물질순환 심층 연구가 필요하다.

  • PDF

Accuracy comparison of 3-unit fixed dental provisional prostheses fabricated by different CAD/CAM manufacturing methods (다양한 CAD/CAM 제조 방식으로 제작한 3본 고정성 임시 치과 보철물의 정확도 비교)

  • Hyuk-Joon Lee;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Purpose: This in vitro study aimed to compare the trueness of 3-unit fixed dental provisional prostheses (FDPs) fabricated by three different additive manufacturing and subtractive manufacturing procedures. Methods: A reference model with a maxillary left second premolar and the second molar prepped and the first molar missing was scanned for the fabrication of 3-unit FDPs. An anatomically shaped 3-unit FDP was designed on computer-aided design software. 10 FDPs were fabricated by subtractive (MI group) and additive manufacturing (stereolithography: SL group, digital light processing: DL group, liquid crystal displays: LC group) methods, respectively (N=40). All FDPs were scanned and exported to the standard triangulated language file. A three-dimensional analysis program measured the discrepancy of the internal, margin, and pontic base area. As for the comparison among manufacturing procedures, the Kruskal-Wallis test and the Mann-Whitney test with Bonferroni correction were evaluated statistically. Results: Regarding the internal area, the root mean square (RMS) value of the 3-unit FDPs was the lowest in the MI group (31.79±6.39 ㎛) and the highest in the SL group (69.34±29.88 ㎛; p=0.001). In the marginal area, those of the 3-unit FDPs were the lowest in the LC group (25.39±4.36 ㎛) and the highest in the SL group (48.94±18.98 ㎛; p=0.001). In the pontic base area, those of the 3-unit FDPs were the lowest in the LC group (8.72±2.74 ㎛) and the highest in the DL group (20.75±2.03 ㎛; p=0.001). Conclusion: A statistically significant difference was observed in the RMS mean values of all the groups. However, in comparison to the subtractive manufacturing method, all measurement areas of 3-unit FDPs fabricated by three different additive manufacturing methods are within a clinically acceptable range.