• Title/Summary/Keyword: Dilated U-Net

Search Result 11, Processing Time 0.021 seconds

Improvement of concrete crack detection using Dilated U-Net based image inpainting technique (Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안)

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.65-68
    • /
    • 2021
  • 본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.

  • PDF

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF

Multi-Class Whole Heart Segmentation using Residual Multi-dilated convolution U-Net (Residual Multi-dilated convolution U-Net을 이용한 다중 심장 영역 분할 알고리즘 연구)

  • Lim, Sang-Heon;Choi, H.S.;Bae, Hui-Jin;Jung, S.K.;Jung, J.K.;Lee, Myung-Suk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.508-510
    • /
    • 2019
  • 본 연구에서는 딥 러닝을 이용하여 완전 자동화된 다중 클래스 전체 심장 분할 알고리즘을 제안하였다. 제안된 방법은 recurrent convolutional block과 residual multi-dilated block을 삽입하여 기존 U-Net을 개선한 인공신경망 모델을 사용하였다. 평가는 자동화 분석 결과와 수동 평가를 비교하였다. 그 결과 96.88%의 평균 DSC, 95.60%의 정확도, 97.00%의 recall을 얻었다. 이 실험 결과는 제안된 방법이 다양한 심장 구조에서 효과적으로 구분되어 수행되었음을 알 수 있다. 본 연구에서 제안된 알고리즘이 의사와 방사선 의사가 영상을 판독하거나 임상 결정을 내리는데 보조적 역할을 할 것을 기대한다.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we proposed a deep learning model based on multi-scale dilated convolution feature fusion for the segmentation of black ice region in road image to send black ice warning to drivers in real time. In the proposed multi-scale dilated convolution feature fusion network, different dilated ratio convolutions are connected in parallel in the encoder blocks, and different dilated ratios are used in different resolution feature maps, and multi-layer feature information are fused together. The multi-scale dilated convolution feature fusion improves the performance by diversifying and expending the receptive field of the network and by preserving detailed space information and enhancing the effectiveness of diated convolutions. The performance of the proposed network model was gradually improved with the increase of the number of dilated convolution branch. The mIoU value of the proposed method is 96.46%, which was higher than the existing networks such as U-Net, FCN, PSPNet, ENet, LinkNet. The parameter was 1,858K, which was 6 times smaller than the existing LinkNet model. From the experimental results of Jetson Nano, the FPS of the proposed method was 3.63, which can realize segmentation of black ice field in real time.

Fully Automatic Heart Segmentation Model Analysis Using Residual Multi-Dilated Recurrent Convolutional U-Net (Residual Multi-Dilated Recurrent Convolutional U-Net을 이용한 전자동 심장 분할 모델 분석)

  • Lim, Sang Heon;Lee, Myung Suk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In this paper, we proposed that a fully automatic multi-class whole heart segmentation algorithm using deep learning. The proposed method is based on U-Net architecture which consist of recurrent convolutional block, residual multi-dilated convolutional block. The evaluation was accomplished by comparing automated analysis results of the test dataset to the manual assessment. We obtained the average DSC of 96.88%, precision of 95.60%, and recall of 97.00% with CT images. We were able to observe and analyze after visualizing segmented images using three-dimensional volume rendering method. Our experiment results show that proposed method effectively performed to segment in various heart structures. We expected that our method can help doctors and radiologist to make image reading and clinical decision.

Liver Segmentation using Multi-dilated U-Net (다중 확장된 컨볼루션 U-Net 을 사용한 간 영역 분할)

  • Sinha, Shrutika;Oh, Kanghan;Boud, Fatima;Jeong, Hwan-Jeong;Oh, Il-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1036-1038
    • /
    • 2020
  • This paper proposes a novel automated liver segmentation using Multi-Dilated U-Nets. The proposed multidilation segmentation model has the advantage of considering both local and global shapes of the liver image. We use the CT images subject-wise, every 2D image is concatenated to 3D to calculate the IOU score and DICE score. The experimental results on Jeonbuk National University hospital dataset achieves better performance than the conventional U-Net.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Tongue Segmentation Using the Receptive Field Diversification of U-net

  • Li, Yu-Jie;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.37-47
    • /
    • 2021
  • In this paper, we propose a new deep learning model for tongue segmentation with improved accuracy compared to the existing model by diversifying the receptive field in the U-net. Methods such as parallel convolution, dilated convolution, and constant channel increase were used to diversify the receptive field. For the proposed deep learning model, a tongue region segmentation experiment was performed on two test datasets. The training image and the test image are similar in TestSet1 and they are not in TestSet2. Experimental results show that segmentation performance improved as the receptive field was diversified. The mIoU value of the proposed method was 98.14% for TestSet1 and 91.90% for TestSet2 which was higher than the result of existing models such as U-net, DeepTongue, and TongueNet.

Automatic Volumetric Brain Tumor Segmentation using Convolutional Neural Networks

  • Yavorskyi, Vladyslav;Sull, Sanghoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.432-435
    • /
    • 2019
  • Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.

  • PDF

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.