• Title/Summary/Keyword: Dijkstra Algorithm

Search Result 163, Processing Time 0.027 seconds

Flow Path Design for Automated Transport Systems in Container Terminals Considering Traffic Congestion

  • Singgih, Ivan Kristianto;Hong, Soondo;Kim, Kap Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.19-31
    • /
    • 2016
  • A design method of the network for automated transporters mounted on rails is addressed for automated container terminals. In the network design, the flow directions of some path segments as well as routes of transporters for each flow requirement must be determined, while the total transportation and waiting times are minimized. This study considers, for the design of the network, the waiting times of the transporters during the travel on path segments, intersections, transfer points below the quay crane (QC), and transfer points at the storage yard. An algorithm, which is the combination of a modified Dijkstra's algorithm for finding the shortest time path and a queuing theory for calculating the waiting times during the travel, is proposed. The proposed algorithm can solve the problem in a short time, which can be used in practice. Numerical experiments showed that the proposed algorithm gives solutions better than several simple rules. It was also shown that the proposed algorithm provides satisfactory solutions in a reasonable time with only average 7.22% gap in its travel time from those by a genetic algorithm which needs too long computational time. The performance of the algorithm is tested and analyzed for various parameters.

Analysis of Infiltration Route using Optimal Path Finding Methods and Geospatial Information (지형공간정보 및 최적탐색기법을 이용한 최적침투경로 분석)

  • Bang, Soo Nam;Heo, Joon;Sohn, Hong Gyoo;Lee, Yong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.195-202
    • /
    • 2006
  • The infiltration route analysis is a military application using geospatial information technology. The result of the analysis would present vulnerable routes for potential enemy infiltration. In order to find the susceptible routes, optimal path search algorithms (Dijkstra's and $A^*$) were used to minimize the cost function, summation of detection probability. The cost function was produced by capability of TOD (Thermal Observation Device), results of viewshed analysis using DEM (Digital Elevation Model) and two related geospatial information coverages (obstacle and vegetation) extracted from VITD (Vector product Interim Terrain Data). With respect to 50m by 50m cells, the individual cost was computed and recorded, and then the optimal infiltration routes was found while minimizing summation of the costs on the routes. The proposed algorithm was experimented in Daejeon region in South Korea. The test results show that Dijkstra's and $A^*$ algorithms do not present significant differences, but A* algorithm shows a better efficiency. This application can be used for both infiltration and surveillance. Using simulation of moving TOD, the most vulnerable routes can be detected for infiltration purpose. On the other hands, it can be inversely used for selection of the best locations of TOD. This is an example of powerful geospatial solution for military application.

GIS Optimization for Bigdata Analysis and AI Applying (Bigdata 분석과 인공지능 적용한 GIS 최적화 연구)

  • Kwak, Eun-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.171-173
    • /
    • 2022
  • The 4th industrial revolution technology is developing people's lives more efficiently. GIS provided on the Internet services such as traffic information and time information makes people getting more quickly to destination. National geographic information service(NGIS) and each local government are making basic data to investigate SOC accessibility for analyzing optimal point. To construct the shortest distance, the accessibility from the starting point to the arrival point is analyzed. Applying road network map, the starting point and the ending point, the shortest distance, the optimal accessibility is calculated by using Dijkstra algorithm. The analysis information from multiple starting points to multiple destinations was required more than 3 steps of manual analysis to decide the position for the optimal point, within about 0.1% error. It took more time to process the many-to-many (M×N) calculation, requiring at least 32G memory specification of the computer. If an optimal proximity analysis service is provided at a desired location more versatile, it is possible to efficiently analyze locations that are vulnerable to business start-up and living facilities access, and facility selection for the public.

  • PDF

A Weighted based Pre-Perform A* Algorithm for Efficient Heuristics Computation Processing (효율적인 휴리스틱 계산 처리를 위한 가중치 기반의 선수행 A* 알고리즘)

  • Oh, Min-Seok;Park, Sung-Jun
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.43-52
    • /
    • 2013
  • Path finder is one of the very important algorithm of artificial intelligence and is a process generally used in many game fields. Path finder requires many calculation, so it exerts enormous influences on performances. To solve this, many researches on the ways to reduce the amount of calculate operations have been made, and the typical example is A* algorithm but it has unnecessary computing process, reducing efficiency. In this paper, to reduce the amount of calculate operations such as node search with costly arithmetic operations, we proposes the weight based pre-processing A* algorithm. The simulation was materialized to measure the efficiency of the weight based pre-process A* algorithm, and the results of the experiments showed that the weight based method was approximately 1~2 times more efficient than the general methods.

Analysis of Optimal Infiltraction Route using Genetic Algorithm (유전자 알고리즘을 이용한 최적침투경로 분석)

  • Bang, Soo-Nam;Sohn, Hyong-Gyoo;Kim, Sang-Pil;Kim, Chang-Jae;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2011
  • The analysis of optimal infiltration path is one of the representative fields in which the GIS technology can be useful for the military purpose. Usually the analysis of the optimal path is done with network data. However, for military purpose, it often needs to be done with raster data. Because raster data needs far more computation than network data, it is difficult to apply the methods usually used in network data, such as Dijkstra algorithm. The genetic algorithm, which has shown great outcomes in optimization problems, was applied. It was used to minimize the detection probability of infiltration route. 2D binary array genes and its crossover and mutation were suggested to solve this problem with raster data. 30 tests were performed for each population size, 500, 1000, 2000, and 3000. With each generation, more adoptable routes survived and made their children routes. Results indicate that as the generations increased, average detection probability decreased and the routes converged to the optimal path. Also, as the population size increases, more optimal routes were found. The suggested genetic algorithm successfully finds the optimal infiltration route, and it shows better performance with larger population.

Routing Algorithm with Adaptive Weight Function based on Possible Available Wavelength in Optical WDM Networks

  • Pavarangkoon, Praphan;Thipchaksurat, Sakchai;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1338-1341
    • /
    • 2004
  • In this paper, we have proposed a new approach of routing and wavelength assignment algorithms, called Possible Available Wavelength (PAW) algorithm. The weight of a link is used as the main factor for routing decision in PAW algorithm. The weight of a link is defined as a function of hop count and available wavelengths. This function includes a determination factor of the number of wavelengths that are being used currently and are supposed to be available after a certain time. The session requests from users will be routed on the links that has the greatest number of link weight by using Dijkstra's shortest path algorithm. This means that the selected lightpath will has the least hop count and the greatest number of possible available wavelengths. The impact of proposed link weight computing function on the blocking probability and link utilization is investigated by means of computer simulation and comparing with the traditional mechanism. The results show that the proposed PAW algorithm can achieve the better performance in terms of the blocking probability and link utilization.

  • PDF

Route Exploration Algorithm for Emergency Rescue Support on Urgent Disaster (긴급 재해 발생 시 피난 지원을 위한 탈출 경로 탐색 알고리즘)

  • Hwang, Jun-Su;Choi, Young-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.9
    • /
    • pp.12-21
    • /
    • 2016
  • The emergency evacuation support system supports evacuation assistance when an urgent disaster occurs. We have implemented evacuation route search algorithm to assist people's escape when a disaster occurs such as fires or terrorism in the building. The algorithm will guide the escape route at the fastest emergency exit of each region at the emergency state. The algorithm calculates the escape route by applying the weighting factor of age groups and population density around the emergency exit and of other regions. So the system helps escape to bypass the crowded emergency exit and the disaster area, and reduces the congestion of emergency exit and overloading of evacuation route.

Faster pipe auto-routing using improved jump point search

  • Min, Jwa-Geun;Ruy, Won-Sun;Park, Chul Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.596-604
    • /
    • 2020
  • Previous studies on pipe auto-routing algorithms generally used such algorithms as A*, Dijkstra, Genetic Algorithm, Particle Swarm Optimization, and Ant Colony Optimization, to satisfy the relevant constraints of its own field and improve the output quality. On the other hand, this study aimed to significantly improve path-finding speed by applying the Jump Point Search (JPS) algorithm, which requires lower search cost than the abovementioned algorithms, for pipe routing. The existing JPS, however, is limited to two-dimensional spaces and can only find the shortest path. Thus, it requires several improvements to be applied to pipe routing. Pipe routing is performed in a three-dimensional space, and the path of piping must be parallel to the axis to minimize its interference with other facilities. In addition, the number of elbows must be reduced to the maximum from an economic perspective, and preferred spaces in the path must also be included. The existing JPS was improved for the pipe routing problem such that it can consider the above-mentioned problem. The fast path-finding speed of the proposed algorithm was verified by comparing it with the conventional A* algorithm in terms of resolution.

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

En-Route Trajectory calculation using Flight Plan Information for Effective Air Traffic Management

  • Kim, Yong-Kyun;Jo, Yun-Hyun;Yun, Jin-Won;Oh, Taeck-Keun;Roh, Hee-Chang;Choi, Sang-Bang;Park, Hyo-Dal
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.375-384
    • /
    • 2010
  • Trajectory modeling is foundational for 4D-Route modeling, conflict detection and air traffic flow management. This paper proposes a novel algorithm based Vincenty's fomulas for trajectory calculation, combined with the Dijkstra algorithm and Vincenty's formulas. Using flight plan simulations our experimental results show that our method of En-route trajectory calculation exhibits much improved performance in accuracy.