• Title/Summary/Keyword: Dihydropyridine derivatives

Search Result 14, Processing Time 0.015 seconds

Evaluation of the inhibitive characteristics of 1,4-dihydropyridine derivatives for the corrosion of mild steel in 1M $H_2SO_4$

  • Sounthari, P.;Kiruthika, A.;Sai santhoshi, J.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.65-78
    • /
    • 2013
  • The present investigation deals with the corrosion inhibition of mild steel in 1M $H_2SO_4$ with 1, 4-dihydro pyridine and its derivatives prepared using microwave activation method. The synthesis of inhibitor was confirmed by IR spectra. The effect of 1, 4-dihydropyridine derivatives on the corrosion inhibition of mild steel in 1M $H_2SO_4$ was studied using weight loss and electrochemical polarization techniques. Influence of temperature (303-333K) and synergistic effect of halide ions ($I^-$, $Br^-$ and $Cl^-$) on the inhibition behaviour was also studied. Corrosion products on the metal surface were analyzed by scanning electron microscopy (SEM) and a possible mechanism of inhibition by the compounds is suggested. Thermodynamic parameters were calculated using weight loss data in order to elaborate the mechanism of corrosion inhibition. Polarization measurements revealed that the studied compounds acted as mixed type inhibitor but slightly anodic in nature. Electrochemical impedance measurements revealed that the compounds were adsorbed onto the carbon steel surface and the adsorption obeyed the Langmuir adsorption isotherm. The synergistic effect of halide ions on the IE increases with increase in concentration. The IE obtained from atomic absorption spectrophotometric studies was found to be in good agreement with that obtained from the conventional weight loss method. SEM revealed the information of a smooth, dense protective layer in presence of the inhibitors.

Reaction of lithiated pyridine with $Me_2RSiCl$ and its identification with NMR spectroscopic methods(R=Me, $^tBuCH_2CHSiMe_3$) (리튬화된 Pyridine과 $ME_2RSiCl$의 반응생성물의 NMR 분광학적 연구 (R=Me, $^tBuCH_2CHSiMe_3$))

  • Kim, Duk-Mook;Son, Byung-Yung
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-191
    • /
    • 1994
  • A reactive intermediate 1,2-dihydropyridine derivative 2 has been prepared and isolated from the reaction of pyridine with $^tBuLi$ and trimethylchlorosilane in nonpolar condition at low temperature 2 has characterized by $^1H-NMR$ fine structure analysis with SPINX3. The mechanistic information of formation of 2 was obtained from synthesized 2,5-disubstituted pyridine derivatives 3 and 4.

  • PDF

Nimodipine as a Potential Pharmacological Tool for Characterizing R-Type Calcium Currents

  • Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.511-519
    • /
    • 2001
  • Nimopidine, one of dihydropyridine derivatives, has been widely used to pharmacologically identify L-type Ca currents. In this study, it was tested if nimodipine is a selective blocker for L-type Ca currents in sensory neurons and heterologous system. In mouse dorsal root ganglion neurons (DRG), low concentrations of nimodipine $(<10\;{\mu}M),$ mainly targeting L-type Ca currents, blocked high-voltage-activated calcium channel currents by ${\sim}38%.$ Interestingly, high concentrations of nimodipine $(>10\;{\mu}M)$ further reduced the 'residual' currents in DRG neurons from ${\alpha}_{1E}$ knock-out mice, after blocking L-, N- and P/Q-type Ca currents with $10\;{\mu}M$ nimodipine, $1\;{\mu}M\;{\omega}-conotoxin$ GVIA and 200 nM ${\omega-agatoxin$ IVA, indicating inhibitory effects of nimodipine on R-type Ca currents. Nimodipine $(>10\;{\mu}M)$ also produced the inhibition of both low-voltage-activated calcium channel currents in DRG neurons and ${\alpha}_{1B}\;and\;{\alpha}_{1E}$ subunit based Ca channel currents in heterologous system. These results suggest that higher nimodipine $(>10\;{\mu}M)$ is not necessarily selective for L-type Ca currents. While care should be taken in using nimodipine for pharmacologically defining L-type Ca currents from native macroscopic Ca currents, nimodipine $(>10\;{\mu}M)$ could be a useful pharmacological tool for characterizing R-type Ca currents when combined with toxins blocking other types of Ca channels.

  • PDF