• Title/Summary/Keyword: Dihedral angle between planes

Search Result 8, Processing Time 0.02 seconds

The molecular structure of (+) -6-methoxy-.alpha. 1-2-naphtha-leneacetic acid determined by X-Ray method

  • Kim, Yang-Bae;Song, Hyun-June
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.137-139
    • /
    • 1984
  • The molecular structure of (+)-6-Me hoxy-.alpha.-methyl-2-naphthaleneacetic acid (Naproxen), $C_{14}H_{14}O_{ 3}$, was determined by X-Ray diffraction technique. Naproxen crystallized in $P2_1$ with two molecules on the unit cell of dimensions a = 7.855, b = 5.783, c = 13.347$\AA$ and $\beta$ = $93.9^{\circ}$

  • PDF

Crystal Structure of Bithionol, $C_{12}H_6Cl_4O_2S$

  • Hyung Song;Euisung Kim;Hyun-So Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.19-21
    • /
    • 1990
  • The crystal structure of Bithionol, $C_{12}H_6Cl_4O_2S$, has been determined from X-ray intensity data measured by Enraf-Nonius CAD-4 diffractometer using graphite-monochromatized $Mo-K\alpha$ radiation. The crystal data as follows; triclinic space group P{\bar{1}}$, a = 8.879(2), b = 10.782(1), c = 8.511(1)${\AA}$, ${\alpha}$ = 115.43(1), ${\beta}$ = 115.22(1), ${\gamma}\;=\;74.44^{\circ}(1)$. ${\mu}\;=\;9.51\;cm^{-1}$, F(000) = 356, Z = 2. Final R value is 0.036 for independent 2669 observed reflections. Each six-membered benzene rings are coplanar within experimesntal errors and the dihedral angle between these planes is $81.28^{\circ}$ (1). The S-(1) and S-C(7) distances are 1.787(2) and 1.791(3)${\AA}$, respectively.

The crystal and molecular structure of chlorpropamide

  • Koo, Chung-Hoe;Cho, Sung-Il;Yeon, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1980
  • Chlorpropamide, $C_{10}H_{13}N_{2}O_{3}SCI$, forms orthofombic crystals of space group $P_{2}_{ 1}2_{1}2_{1}$ with a 9.066 $\pm$ 0.004, b = 5.218 $\pm$ 0.003, c = 26, 604 $\pm$, 0.008 $\AA$, and four molecules per cell. Three dimensional photographic data were collected with Mo-K$\alpha$ radiation. The structure was determined using Patterson, Fourier and Difference syntheses methods and refined by the block-diagonal least-squares methods with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atomes. The final R value was 0.10 for the 1823 observed independent reflections. The dihedral angle between the planes through the benzene ring and the urea goup is 99$^{\circ}$. The conformational angle formed by the projection of the S-C(1) with that of N(1)-C(7) when the projection is taken along the S-N(1) bond is 76$^{\circ}$. The molecule appears to form with neighbouring molecules two hydrogen bonds, N(1)..H...O(3) and N(2)-H...0(2) of lengths 2.774 and 2.954$\AA$ respectively related by screw diads parallel to the a axis. Adjacent molecules parallel to b and c axis are bound together by van der Wasls forces.

  • PDF

The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ) (Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조)

  • Kim, Se Hwan;NamGung, Hae;Lee, Hyeon Mi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.827-832
    • /
    • 1994
  • The crystal structure of bis(N-methylphenazinium) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: ((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2]) $M_w$ = 672.93, Triclinic, Space Group P1 (No = 2), a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}$, Z = 2, $V = 1363(2){\AA}^3\;D_c = 1.639\;gcm^{-3},\;{\mu} = 7.3\;cm^{-1},\;F(000) = 680.0$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$= 0.7107\;\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using Killean & Lawrence weights. The final R and S values were $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ and S = 5.45 for 3120 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of 6.3(6) and $57.06(6)^{\circ}$ between their planes. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations of two triads are 3.328 and 3.463 $\AA$, respectively. The triads are stacked along b-axis, but their orientations are different based on dihedral angle $59.08(9)^{\circ}$ of two complex anions.

  • PDF

Solution Dynamics and Crystal Structure of $CpMoOs_{3}(CO)_{10}(\mu-H)_{2}[\mu_{3}-\eta^{2}-C(O)CH_{2}Tol]$

  • Joon T. Park;Jeong-Ju Cho;Kang-Moon Chun;Sock-Sung Yun;Kim SangSoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.137-143
    • /
    • 1993
  • The tetranuclear heterometallic complex CpMo$Os_3(CO)_{10}({\mu]-H)2[{\mu}3-{\eta}^2-C(O)CH_2Tol]\;(1,\;Cp={\eta}^5-C_5H_5,\;Tol=p-C_6H_4Me)$ has been examined by variable-temperature $^{13}$C-NMR spectroscopy and by a full three-dimensional X-ray structual analysis. Complex 1 crystallizes in the orthorhombic space group Pna2$_1$ with a = 12.960(1) ${\AA}$, b = 11.255(l) ${\AA}$, c = 38.569(10)${\AA}$, V = 5626(2) ${\AA}^3$ and ${\rho}$(calcd) = 2.71 gcm$^{-3}$ for Z = 8 and molecular weight 1146.9. Diffraction data were collectedon a CAD4 diffractometer, and the structure was refined to $R_F$ = 9.7% and $R_{W^F}$ = 9.9% for 2530 data (MoK${\alpha}$ radiation). There are two essentially equivalent molecules in the crystallographic asymmetric unit. The tetranuclear molecule contains a triangulated rhomboidal arrangement of metal atoms with Os(2) and Mo at the two bridgehead positions. The metal framework is planar; the dihedral angle between Os(l)-Os(2)-Mo and Os(3)-Os(2)-Mo planes is 180$^{\circ}$. A triply bridging (${\mu}_3,\;{\eta}^2$) acyl ligand lies above the Os(l)-Os(2)-Mo plane; the oxygen atom spans the two bridgehead positions, while the carbon atom spans one bridgehead position and an acute apical position. The molecular architecture is completed by an ${\eta}^5$-cyclopentadienyl ligand and a semi-triply bridging carbonyl ligand on the molybdenum atom, and nine terminal carbonyl ligands-four on Os(3), three on Os(l), and two on Os(2). The two hydride ligands are inferred to occupy the Os(l)-Os(2) and Mo-Os(3) edges from structural and NMR data.

The Crystal and Molecular Structure of Sulfadiazine (Sulfadiazine의 結晶 및 分子構造)

  • Shin Hyun So;Ihn Gwon Shik;Kim Hoon Sup;Koo Chung Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.329-340
    • /
    • 1974
  • Sulfadiazine, $C_{10}H_{10}N_4O_2S$, forms monoclinic crystals of space group $P21}c$ from a mixture of acetone and ethanol with $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$, and four molecules per cell. Three dimensional photographic data were collected with $CuK\alpha$ radiation. The structure was determined using Patterson and Fourier synthesis methods and refined by block diagonal least-squares methods with isotropic thermal parameter for all non-hydrogen atoms. The final R value was 0.15 for the 1517 observed independent reflections. The dihedral angle between the planes through the benzene ring and the pyrimidine ring is $76^{\circ}$. The conformational angle formed by the projection of the S-C(5) bond with that of N(1)-C(1) where the projection is taken along the S-N(1) bond is $77^{\circ}$. The imino nitrogen atom, N(1), and pyrimidine nitrogen atom, N(3), form intermolecular $N-H{\cdots}N$ hydrogen bond between the molecules related by center of symmetry. Amino nitrogen atom, N(4), forms two intermolecular $N-H{\cdots}O$ hydrogen bonds, with O(1) and O(2) atoms of different molecules separated by b. A two dimensional network of hydrogen bonds form infinite molecular sheets parallel to the (100) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

Crystal Structure of Bithional Sulfoxide, $C_{12}H_6Cl_4O_3S$ (비치오놀 설폭사이드, C12H6Cl4O3S의 결정구조)

  • Sin, Hyeon So;Song, Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.283-287
    • /
    • 1994
  • The crystal stucture of bithional surfoxide, $C_{12}H_6Cl_4O_3S$, has been determined from 2295 independent reflections collected on an automated CAD-4 diffractometer with a graphite-monochromated $Mo-K\alpha$ radiation. The crystal belongs to the monoclinic, space group P2$_1$/n, with a unit cell dimensions a = 12.448(4), b = 9.740(1), c = $11.815(2)\AA$, $\beta$ = $100.06^{\circ}$, $\mu$ = 9.02 cm$^{-1}$, Dm = 1.76 g/cm$^3$, Dc = 1.75 g/cm$^3$, F(000) = 744, and Z = 4. The structure was solved by the direct method and refined by the least-squares method. The final R values was 0.037 for 2295 independent reflections. Overall conformation of the molecule is folded with respect to central surfur atom. Comparing with the molecular conformation of bithional, one of phenyl rings was swinged with about $180^{\circ}.$ This conformational change in the molecule results in the existance of intramolecular-hydrogen bond of S-O(3)---H-O(1) type and its steric hindrance between this moiety and the other phenyl ring. The two best planes of the phenyl rings have a maximum deviation of 0.009 $\AA$ for C(1) atom. The dihedral angle between two phenyl rings is $99.22^{\circ}.$ In the crystal structure, the molecules are packed with intermolecular-hydrogen bond of O(3)---H-O(2).

  • PDF

The Crystal Structure of Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ) (Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ)의 결정구조)

  • Kim Sei Hwan;NagGung Hae;Jeon, Ho Jung
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.599-603
    • /
    • 1993
  • Crystal structure of bis(1,2-diaminopropane)palladium(II) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: $Pd_2C_{10}H_{10}N_{4}O_{8}$, $M_W$ = 573.09, orthorhombic, space group $P_{ccn}$ (No = 56), a = 16.178(5), b = 16.381(6), c = 6.685(2)$\{AA}$, V = 1771.6 $\{AA}^3$, $M_W$W = 573.09, $D_c$ = 2.014 g${\cdot}c\;m^{-3}$, Z = 4, T = 294K, F(000) = 1056.0 and $\mu$ = 20.466 c$m^{-1}$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$ = 0.7107 $\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-squares methods using Pivot weights. The final R and S values were R = 0.065, $R_W = 0.059, R_{all}$ = 0.065 and S = 4.315 for 605 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angle of $18(l)^{\circ}$ between thier planes. In the crystal structure, they do not have the Magnus's salt type mixed stacks; instead, the complex anions form regular stacks along the c-axis with the M-M bond length of $3.343(5)\AA$ and their stacks are surrounded by the complex cations through hydrogen bonds with the nitrogen-oxygen distances of 2.94(3) and $3.31(4)\AA.$

  • PDF