• 제목/요약/키워드: Digital relief model

검색결과 50건 처리시간 0.033초

GIS 음영기복과 렌더링의 비교에 의한 수치지형모형의 표현 분석 (Analysis of Digital Terrain Model Display by Comparison of GIS Shaded Relief and Rendering)

  • 이형석
    • 한국지리정보학회지
    • /
    • 제9권1호
    • /
    • pp.127-136
    • /
    • 2006
  • 수치지형모형을 시각적으로 분석하는데 있어 음영기복을 사용하고 있지만 지형의 음영 표현만을 생각하는 경우가 있어 정확한 그림자 범위를 확인하지 않고 있다. 본 연구는 GIS의 지형 표현에 사용되는 음영기복 기능을 렌더링과 비교하여 지형의 그림자 특성을 파악함으로써 각각 나타나는 수치지형모형상의 표현 차이를 분석하였다. 도로가 있는 지형으로 실험 대상지역을 선정하여 불규칙삼각망의 수치지형모형을 생성한 후 09시와 15시의 시간대별 태양의 방위각 및 고도에 따른 음영기복과 렌더링 기법을 적용하였다. 그 결과 음영기복은 태양의 광선을 받는 지형지물의 뒷부분만 어두운 상태로 나타났고, 렌더링을 통하여 투영된 그림자가 생성됨을 알 수 있었다. 이 상호 비교를 통해 음영기복을 이해할 수 있는 자료로 제시할 수 있으며, 렌더링 기법은 지형지물의 일조 분석 등에 효과적으로 사용될 수 있을 것으로 기대된다.

  • PDF

수치지형고도자료의 영상처리 (Digital image processing for digital elevation model data)

  • 이봉주;조민호;강필종
    • 지질공학
    • /
    • 제2권2호
    • /
    • pp.141-146
    • /
    • 1992
  • 미국 DMA사에서 제공되고 있는 수치지형고도자료를 이용하여 Shaded Relief Umage와 Landsat TM자료의 Stereo-pair image를 작성하였다. 이는 지형지세의 3차원적 표현 및 관찰을 통한 위성자료로 부터 지질구조 판독의 정확도 및 객관성 제고에 매우 유용하게 활용될 것으로 기대된다.

  • PDF

The Generation of True Orthophotos from High Resolution Satellites Images

  • Chen, Liang-Chien;Wen, Jen-Yu;Teo, Tee-Ann
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.885-887
    • /
    • 2003
  • The purpose of this investigation is to generate true orthophotos from high resolution satellite images. The major works of this research include 4 parts: (1) determination of orientation parameters, (2) generating traditional orthophotos using terrain model, (3) relief correction for buildings, and (4) process for hidden areas. To determine the position of satellites, we correct the onboard orientation parameters to fine tune the orbit. In the generation of traditional orthophotos, we employ orientation parameters and digital terrain model(DTM) to rectify tilt displacements and relief displacements for terrain. We, then, compute relief displacements for buildings with digital building model (DBM). To avoid double mapping, we detect hidden areas. Due to the satellite’s small field of view, an efficient method for the detection of hidden areas and building rectification will be proposed in this paper. Test areas cover the city of Kaohsiung in southern Taiwan. Test images are from the QuickBird satellite.

  • PDF

LANDFORM 분류를 위한 수치기복모형의 적용 (The application of a digital relief model to landform classification)

  • 양인태;김동문;유영걸;천기선
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.155-162
    • /
    • 1999
  • In the last few years the automatic classification of morpholgical landforms using GSIS and DEM was investigated. Particular emphasis has been put on the morphological point attribute approaches and the extraction of drainage basin variables from digital elevation models. The automated derivation of landforms has become a neccessity for quantitative analysis in geomorphology. Furthermore, the application of GSIS technologies has become an important tool for data management and numerical data analysis for purpose of geomorphological mapping. A process developed by Dikau et al, which automates Hanmond's manual process, was applied to the pyoung chang of the kangwon. Although it produced a classification that has good resemblance to the landforms in the area, it had some problems. For example, it produced a progressive zonation when landform changes from plains to mountains, it does not distinguish open valleys from a plains mountain interface, and it was affected by micro relief. Although automating existing quantitative manual processes is an important step in the evolution automation, definition may need to be calibrated since the attributes are oftem measured differently. A new process is presented that partly solves these problems.

  • PDF

Development of Earthquake Damage Estimation System and its Result Transmission by Engineering Test Satellite for Supporting Emergency

  • Jeong, Byeong-Pyo;Hosokawa, Masafumi;Takizawa, Osamu
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.12-19
    • /
    • 2011
  • Drawing on its extensive experience with natural disasters, Japan has been dispatching Japan Disaster Relief (JDR) team to disaster-stricken countries to provide specialist assistance in rescue and medical operations. The JDR team has assisted in the wake of disasters including the 2004 Indian Ocean Earthquake and the 2008 Sichuan Earthquake in China. Information about the affected area is essential for a rapid disaster response. However, it can be difficult to gather information on damages in the immediate post-disaster period. To help overcome this problem, we have built on an Earthquake Damage Estimation System. This system makes it possible to produce distributions of the earthquake's seismic intensity and structural damage based on pre-calculated data such as landform and site amplification factors for Peak Ground Velocity, which are estimated from a Digital Elevation Model, as well as population distribution. The estimation result can be shared with the JDR team and with other international organizations through communications satellite or the Internet, enabling more effective rapid relief operations.

  • PDF

DSM GENERATION FROM IKONOS STEREO IMAGERY

  • Rau, Jiann-Yeou;Chen, Liang-Chien;Chang, Chih-Li
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.57-59
    • /
    • 2003
  • Digital surface model generation from IKONOS stereo imagery is a new challenge in photogrammetric community, especially when the satellite company does not provide the raw data as well as their ancillary ephemeris data. In this paper we utilized an estimated relief displacement azimuth and the nominal collection elevation data included in the metadata file to correct the relief displacement of GCPs, together with a linear transformation for geometric modeling of IKONOS imagery. Space intersection is performed by the trigonometric intersection assuming a parallel projection of IKONOS imagery due to its small FOV and frame size. In the experiment, less than 2-meters of RMSE in orbit modeling is achieved denoting the potential positioning accuracy of the IKONOS stereo imagery.

  • PDF

위성영상에서 산악지역의 그림자 추출 (Cast Shadow Extraction of Mountainous Terrain in Satellite Imagery)

  • 손홍규;윤공현;송영선
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.309-312
    • /
    • 2004
  • In mountainous area with high relief, topography may cause cast shadows due to the blocking of direct solar radiation. Remote sensing images of these landscapes display reduced values of reflectance for shadowed areas compared to non-shadowed areas with similar surface cover characteristics. A variety of approaches are possible, though a common step in various active approaches is first to delineate the shadows using automated algorithm and digital surface model (or digital elevation model). This articles demonstrates a common confusion caused by cast shadows

  • PDF

Topographic Relief Mapping on Inter-tidal Mudflat in Kyongki Bay Area Using Infrared Bands of Multi-temporal Landsat TM Data

  • Lee, Kyu-Sung;Kim, Tae-Hoon
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.163-173
    • /
    • 2004
  • The objective of this study is to develop a method to generate micro-relief digital elevation model (DEM) data of the tidal mudflats using multi-temporal Landsat Thematic Mapper (TM) data. Field spectroscopy measurements showed that reflectance of the exposed mudflat, shallow turbid water, and normal coastal water varied by TM band wavelength. Two sets of DEM data of the inter-tidal mudflat area were generated by interpolating several waterlines extracted from multi-temporal TM data acquired at different sea levels. The waterline appearing in the near-infrared band was different from the one in the middle-infrared band. It was found that the waterline in TM band 4 image was the boundary between the shallow turbid water and normal coastal water and used as a second contour line having 50cm water depth in the study area. DEM data generated by using both TM bands 4 and 5 rendered more detailed topographic relief as compared to the one made by using TM band 5 alone.

Evaluation of the Use of Inertial Navigation Systems to Improve the Accuracy of Object Navigation

  • Iasechko, Maksym;Shelukhin, Oleksandr;Maranov, Alexandr;Lukianenko, Serhii;Basarab, Oleksandr;Hutchenko, Oleh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.71-75
    • /
    • 2021
  • The article discusses the dead reckoning of the traveled path based on the analysis of the video data stream coming from the optoelectronic surveillance devices; the use of relief data makes it possible to partially compensate for the shortcomings of the first method. Using the overlap of the photo-video data stream, the terrain is restored. Comparison with a digital terrain model allows the location of the aircraft to be determined; the use of digital images of the terrain also allows you to determine the coordinates of the location and orientation by comparing the current view information. This method provides high accuracy in determining the absolute coordinates even in the absence of relief. It also allows you to find the absolute position of the camera, even when its approximate coordinates are not known at all.

라이다 DSM을 이용한 엄밀정사영상 제작 (Generation of True-Orthphotos using a LIDAR DSM)

  • 박선미;이임평;조성길;민성홍;오소정
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.273-276
    • /
    • 2007
  • In this study, we generated DSM(Digital Surface Model)s and orthophotos with both LIDAR data and scanned aerial photos and compared them with those generated from only the scanned photos. We checked the relief displacements of buildings appearing in the generated orthophotos, where the displacement should not be exist in a true-orthophoto. The RMSE of the relief displacement in the orthophoto generated using a LIDAR DSM is 3 m while the RMSE in the orthophotos from a DSM based on the image matching is 6.1 m. It was revealed that the orthophoto from a LIDAR DSM are closer to a true-orthophoto. But the results in the accuracy test and similarity evaluation of the generated orthophotos were contrary to former results because the roof texture of buildings were expanded to occlusion areas around the buildings. With the central area of the photo, we can generate sufficiently accurate true-orthophotos using a LIDAR DSM.

  • PDF