• Title/Summary/Keyword: Digital main control room

Search Result 20, Processing Time 0.02 seconds

Validation and Verification Process for the Computerized Procedure System in Nuclear Power Plant Control Room (전자식 절차서 시스템의 원전제어적합성 확인 및 검증절차)

  • Cha, Woo-Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • The analog or partly digital typed interface of main control room in nuclear power plant (NPP) is gradually being replaced to the totally digitalized interface suitable for the digital environment. SKN 3,4 Nuclear Power Plant is currently developed in such a way to employ advanced displays and controls such as computerized procedure system(CPS), large display panel(LDP), and Soft control. According to the developed design process, the main control room (MCR) of the SKN3,4 was aesthetically designed based on a design concept of the health and sustainability and technically evaluated with human factors guidelines, which somehow lack of the confidence on the evaluation for the rapidly changing digital environment. The suitable review guideline for the digitalized interface and the environment was developed such as the guideline for CPS with information displays on VDU. For the guideline development, tremendous guidelines and technical papers related to evaluation issues of digital environment has been collected, analyzed and transformed to electric database forms and then built on database management system, called Design Review Supporting System to retrieve the appropriate issues for the practical usage of evaluators-in-field.

  • PDF

Analysis of interface management tasks in a digital main control room

  • Choi, Jeonghun;Kim, Hyoungju;Jung, Wondea;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1554-1560
    • /
    • 2019
  • Development of digital main control rooms (MCRs) has greatly changed operating environments by altering operator tasks, and thus the unique characteristics of digital MCRs should be considered in terms of human reliability analysis. Digital MCR tasks can be divided into primary tasks that directly supply control input to the plant equipment, and secondary tasks that include interface management conducted via soft controls (SCs). Operator performance regarding these secondary tasks must be evaluated since such tasks did not exist in previous analog systems. In this paper, we analyzed SC-related tasks based on simulation data, and classified the error modes of the SCs following analysis of all operational tasks. Then, we defined the factors to be considered in human reliability analysis methods regarding the SCs; such factors are mainly related to interface management and computerized operator support systems. As these support systems function to reduce the number of secondary tasks required for SC, we conducted an assessment to evaluate the efficiency of one such support system. The results of this study may facilitate the development of training programs as well as help to optimize interface design to better reflect the interface management task characteristics of digitalized MCRs.

Guideline-based Evaluation of Human Machine System Environment with the Advanced Information Display (디지털 정보표시 환경의 지침 기반 평가 기술)

  • Cha, Woo-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.99-102
    • /
    • 2007
  • The analog typed interface of main control room in nuclear power plant(NPP) is gradually being replaced to the one suitable for the digital environment. SKN 3,4 is currently developed in such a way to employ digitalized displays and controls such as computerized procedure system(CPS), large display panel(LDP), and Soft control. The main control room (MCR) of the SKN3, 4 was designed based on the human factors guidelines, which somehow lack of the confidence for the rapidly the developed guidelines needs to extend to the one to apply for the total digital environment including task environment, hardware and workstation. In order to achieve the research objectives, tremendous guidelines and technical papers related to evaluation issues of digital environment has been collected, analyzed and transformed to electric database forms and then built on database management system to retrieve the appropriate isues for the practical usage of evaluators-in-field.

A Study of the Evaluation for the Control Room in Human Machine System Under Hybrid Environment (하이브리드 환경하의 인간기계시스템 제어실 평가에 관한 연구)

  • Cha, Woo-Chang;Kim, Nam-Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • While the operator's working environment employs the digital devices and technology which are not be fully digitalized due to its technical constraints, it has been changed to the hybrid environment in which digital and analog elements are combined. The hybrid environments need to study its characteristics and the guidelines for the proper design and evaluation purpose. This paper describes the characteristics and evaluation guidelines for hybrid environment through studying the characteristics of digital and analog environment based on the related human factor guidelines and literatures. The result of this paper would be applied for the human machine system such as main control room in nuclear power plant working under hybrid environment. And also, it may be applied for the evaluation of the generic human working environment which digital and analog elements are jointly used.

Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

  • Lee, Seung Woo;Kim, Ar Ryum;Park, Jinkyun;Kang, Hyun Gook;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.153-163
    • /
    • 2016
  • Environments in nuclear power plants (NPPs) are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs). Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA), which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

Electrical fire simulation in control room of an AGN reactor

  • Jyung, Jae-Min;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.466-473
    • /
    • 2021
  • Fire protection is one of important issues to ensure safety and reduce risks of nuclear power plants (NPPs). While robust programs to shut down commercial reactors in any fires have been successfully maintained, the concept and associated regulatory requirements are constantly changing or strengthening by lessons learned from operating experiences and information all over the world. As part of this context, it is necessary not only to establish specific fire hazard assessment methods reflecting the characteristics of research reactors and educational reactors but also to make decisions based on advancement encompassing numerical analyses and experiments. The objectives of this study are to address fire simulation in the control room of an educational reactor and to discuss integrity of digital console in charge of main operation as well as analysis results through comparison. Three electrical fire scenarios were postulated and twenty-four thermal analyses were carried out taking into account two turbulence models, two cable materials and two ventilation conditions. Twelve supplementary thermal analyses and six subsequent structural analyses were also conducted for further examination on the temperature and heat flux of cable and von Mises stress of digital console, respectively. As consequences, effects of each parameter were quantified in detail and future applicability was briefly discussed. On the whole, higher profiles were obtained when Deardorff turbulence model was employed or polyvinyl chloride material and larger ventilation condition were considered. All the maximum values considered in this study met the allowable criteria so that safety action seems available by sustained integrity of the cable linked to digital console within operators' reaction time of 300 s.

DEVELOPMENT OF AN INTEGRATED DECISION SUPPORT SYSTEM TO AID COGNITIVE ACTIVITIES OF OPERATORS

  • Lee, Seung-Jun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.703-716
    • /
    • 2007
  • As digital and computer technologies have grown, human-machine interfaces (HMIs) have evolved. In safety-critical systems, especially in nuclear power plants (NPPs), HMIs are important for reducing operational costs, the number of necessary operators, and the probability of accident occurrence. Efforts have been made to improve main control room (MCR) interface design and to develop automated or decision support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid operator cognitive processes is proposed for advanced MCRs of future NPPs. This work suggests the design concept of a decision support system which accounts for an operator's cognitive processes. The proposed system supports not only a particular task, but also the entire operation process based on a human cognitive process model. In this paper, the operator's operation processes are analyzed according to a human cognitive process model and appropriate support systems that support each cognitive process activity are suggested.

Human Reliability Analysis for Digitized Nuclear Power Plants: Case Study on the LingAo II Nuclear Power Plant

  • Zou, Yanhua;Zhang, Li;Dai, Licao;Li, Pengcheng;Qing, Tao
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.335-341
    • /
    • 2017
  • The main control room (MCR) in advanced nuclear power plants (NPPs) has changed from analog to digital control system (DCS). Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

A REVIEW ON DEVELOPING INDUSTRIAL STANDARDS TO INTRODUCE DIGITAL COMPUTER APPLICATION FOR NUCLEAR I&C AND HMIT IN JAPAN

  • Yoshikawa, Hidekazu
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.165-178
    • /
    • 2013
  • A comprehensive review on the technical standards about human factors (HF) design and software reliability maintenance for digital instrumentation and control (I&C) and human-machine interface technology (HMIT) in Japanese light water reactor nuclear power plants (NPPs) was given in this paper mainly by introducing the relevant activities at the Japan Electric Association to set up many industrial standards within the traditional framework of nuclear safety regulation in Japan. In Japan, the Fukushima Daiichi accident that occurred on March 11, 2011 has great impact on nuclear regulation and nuclear industries where concerns by the general public about safety have heightened significantly. However for the part of HF design and software reliability maintenance of digital I&C and HMIT for NPP, the author believes that the past practice of Japanese activities with the related technical standards can be successfully inherited in the future, by reinforcing the technical preparedness for the prevention and mitigation against any types of severe accident occurrence.

The effect of communication quality on team performance in digital main control room operations

  • Kim, HyungJun;Kim, Seunghwan;Park, Jinkyun;Lee, Eun-Chan;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1180-1187
    • /
    • 2020
  • A team of operators is required for nuclear power plant operation, and communication between the operators is an important aspect of the team's ability to successfully carry out tasks. It has been difficult to evaluate the quality of this communication though, and as the relationship between communication quality and team performance has yet to be clarified, it has not been applied to most human reliability analysis (HRA) methodologies. This study investigates the relationship between the quality of communication and team performance using data from a full-scope training simulator of a digital main control room (MCR). Two important characteristics of communication were considered to determine quality: each operator's ability to self-confirm the status of a given task in a digital MCR, and the type of communication, as divided into 1-way, 2-way, and 3-way between operators. To measure team performance, the concept of an unsafe act was employed, which is defined as a human error that has the potential to negatively affect plant safety. Analysis results showed that the communication quality and team performance were related to each other. With this more clearly defined relationship, the results of this study can be applied to related performance shaping factors to improve HRA.