• Title/Summary/Keyword: Digital lateral cephalometric radiography

Search Result 8, Processing Time 0.021 seconds

The comparison of landmark identification errors and reproducibility between conventional lateral cephalometric radiography and digital lateral cephalometric radiography (일반두부방사선계측사진과 디지털방사선계측사진의 계측점 식별의 오차 및 재현성에 관한 비교 연구)

  • Lee, Yang-Ku;Yang, Won-Sik;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.79-89
    • /
    • 2002
  • The purpose of this study is to evaluate the reproducibility and errors in landmark identification of conventional lateral cephalometric radiography and digital lateral cephalometric radiography. Fifteen conventional lateral cephalometric radiographs and fifteen digital lateral cephalometric radiographs were selected in adults with no considerations on sex and craniofacial forms. Each landmark was identified and expressed as the coordinate (x, y). The landmarks were classified into 3 groups. The landmarks of the first identification was T1, identification after one week was T2, and identification after one month was T3. The mean and standard deviation of identification errors between replicates were calculated according to the x and y coordinates. The errors between first identification and second identification were expressed as T2-T1(x), T2-T1(y) and those between first identification and third identification were expressed as T3-T1(x), T2-T1(y). Each was divided into conventional lateral cephalometric radiography and digital lateral cephalometric radiography. The independent t- test was used for statistical analysis of identification errors for the evaluation of reproducibility. The results of this study were as follows ; 1. Generally, the mean and standard deviation of landmark identification errors in digital lateral cephalometric radiography was smaller than those of conventional lateral cephalometric radiography. 2. Only a few landmarks showed statistically significant difference in identification error between conventional lateral cephalometric radiography and digital lateral cephalometric radiography. 3. The enhancement of image quality didn't guarantee decrease in landmark identification error and didn't affect tendency of landmark identification error.

Reproducibility of lateral cephalometric landmarks on conventional radiographs and spatial frequency-processed digital images

  • Shin Jeong-Won;Choi Hang-Moon;Heo Min-Suk;Lee Sam-Sun;Choi Hyun-Bae;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.32 no.4
    • /
    • pp.213-219
    • /
    • 2002
  • Purpose : Computed radiography (CR) has been used in cephalometric radiography and many studies have been carried out to improve image quality using various digital enhancement and filtering techniques, During CR image acquisition, the frequency rank and type affect to the image quality. The aim of this study was to compare the diagnostic quality of conventional cephalometric radiographs to those of computed radiography. Materials and Methods : The diagnostic quality of conventional cephalometric radiographs (MO) and their digital image counterparts were compared, and at the same time, six modalities (M1-M6) of spatial frequency-processed digital images were compared by evaluating the reproducibility of 23 cephalometric landmark locations. Reproducibility was defined as an observer's deviation (in mm) from the mean between all observers. Results and Conclusion: In comparison with the conventional cephalometric radiograph (MO), Ml showed statistically significant differences in 8 locations, M2 in 9, M3 12, M4 in 7, M5 in 12, and M6 showed significant differences in 14 of 23 landmark locations (p < 0.05). The number of reproducible landmarks that each modality possesses were 7 in M6, 6 in M5, 5 in M3, 4 in M4, 3 in M2, 2 in Ml, and 1 location in MO. The image modality that observers selected as having the best image quality was M5.

  • PDF

The reliability of tablet computers in depicting maxillofacial radiographic landmarks

  • Tadinada, Aditya;Mahdian, Mina;Sheth, Sonam;Chandhoke, Taranpreet K;Gopalakrishna, Aadarsh;Potluri, Anitha;Yadav, Sumit
    • Imaging Science in Dentistry
    • /
    • v.45 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Purpose: This study was performed to evaluate the reliability of the identification of anatomical landmarks in panoramic and lateral cephalometric radiographs on a standard medical grade picture archiving communication system (PACS) monitor and a tablet computer (iPad 5). Materials and Methods: A total of 1000 radiographs, including 500 panoramic and 500 lateral cephalometric radiographs, were retrieved from the de-identified dataset of the archive of the Section of Oral and Maxillofacial Radiology of the University Of Connecticut School Of Dental Medicine. Major radiographic anatomical landmarks were independently reviewed by two examiners on both displays. The examiners initially reviewed ten panoramic and ten lateral cephalometric radiographs using each imaging system, in order to verify interoperator agreement in landmark identification. The images were scored on a four-point scale reflecting the diagnostic image quality and exposure level of the images. Results: Statistical analysis showed no significant difference between the two displays regarding the visibility and clarity of the landmarks in either the panoramic or cephalometric radiographs. Conclusion: Tablet computers can reliably show anatomical landmarks in panoramic and lateral cephalometric radiographs.

The comparison of cephalometric measurements between measuring methods in digital and conventional lateral cephalometric radiograph (디지털 및 일반 측방두부규격방사선사진에서 측정 방법에 따른 계측치의 비교)

  • Kim Mi-Ja;Huh Kyung-Hoe;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Lee Jin-Koo;Ahn Byoung-Keun;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • Purpose : To compare cephalometric measurement between measuring methods in digital and conventional lateral cephalometric radiograph. Materials and Methods : Twenty digital and conventional lateral cephalometric radiographs were selected. In digital group, cephalometric measurements were performed manually using hardcopies and automatically using $V-Ceph^{TM}$ program on the monitor. In conventional group, the same measurements were performed manually on conventional films, and for automatic measurement conventional films were digitized by scanner. All measurements were performed twice by 4 observers, and 24 cephalometric variables were calculated and the time spent for each measurement was recorded. The differences in measurements data and the time spent for each measurement were compared within each group. Intra-observer and inter-observer comparisons were performed. Results : In both groups, no statistically significant difference between manual and automatic measurements was observed and most of the variables didn't show statistically significant differences between methods. The observer with less experience tended to show statistically significant differences of measurements between methods, and differences from other observers. The differences of measurements between methods in digital group were lesser than those of conventional group with statistical significance in 8 variables out of 24. With automatic method and in digital group, the spent time was shorter. Conclusion : With direct digital radiograph, automatic method using manually idenitified landmarks can be preferable in cephalometric analysis. (Korean J Oral Maxillofac Radiol 2005; 35 : 15-23)

  • PDF

Accuracy of virtual 3-dimensional cephalometric images constructed with 2-dimensional cephalograms using the biplanar radiography principle

  • Lee, Jae-Seo;Kim, Sang-Rok;Hwang, Hyeon-Shik;Lee, Kyungmin Clara
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.407-412
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the accuracy of virtual 3-dimensional (3D) cephalograms constructed using the principle of biplanar radiography by comparing them with cone-beam computed tomography (CBCT) images. Materials and Methods: Thirty orthodontic patients were enrolled in this study. Frontal and lateral cephalograms were obtained with the use of a head posture aligner and reconstructed into 3D cephalograms using biplanar radiography software. Thirty-four measurements representing the height, width, depth, and oblique distance were computed in 3 dimensions, and compared with the measurements from the 3D images obtained by CBCT, using the paired t-test and Bland-Altman analysis. Results: Comparison of height, width, depth, and oblique measurements showed no statistically significant differences between the measurements obtained from 3D cephalograms and those from CBCT images (P>0.05). Bland-Altman plots also showed high agreement between the 3D cephalograms and CBCT images. Conclusion: Accurate 3D cephalograms can be constructed using the principle of biplanar radiography if frontal and lateral cephalograms can be obtained with a head posture aligner. Three-dimensional cephalograms generated using biplanar radiography can replace CBCT images taken for diagnostic purposes.

Factors affecting root curvature of mandibular first molar (하악 제1대구치의 치근 만곡에 영향을 주는 요인)

  • Choi Hang-Moon;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Kim Jung-Hwa;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.55-62
    • /
    • 2006
  • Purpose : To find the cause of root curvature by use of panoramic and lateral cephalometric radiograph. Materials and Methods : Twenty six 1st graders whose mandibular 1st molars .just emerged into the mouth were selected. Panoramic and lateral cephalometric radiograph were taken at grade 1 and 6, longitudinally. In cephalometric radio graph, mandibular plane angle, ramus-occlusal plane angle, gonial angle, and gonion-gnathion distance (Go-Gn distance) were measured. In panoramic radio graph, elongated root length and root angle were measured by means of digital subtraction radiography. Occlusal plane-tooth axis angle was measured, too. Pearson correlations were used to evaluate the relationships between root curvature and elongated length and longitudinal variations of all variables. Multiple regression equation using related variables was computed. Results : The Pearson correlation coefficient between curved angle and longitudinal variations of occlusal plane-tooth axis angle and ramus-occlusal plane angle was 0.350 and 0.401, respectively (p<0.05). There was no significant correlation between elongated root length and longitudinal variations of all variables. The resulting regression equation was $Y=10.209+0.208X_1+0.745X_2$ (Y: root angle, $X_1$: variation of occlusal plane-tooth axis angle, $X_2$: variation of ramus-occlusal plane angle). Conclusion : It was suspected that the reasons of root curvature were change of tooth axis caused by contact with 2nd deciduous tooth and amount of mesial and superior movement related to change of occlusal plane.

  • PDF

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

Correlation of morphological variants of the soft palate and Need's ratio in normal individuals: A digital cephalometric study

  • Verma, Pradhuman;Verma, Kanika Gupta;Kumaraswam, Kikkeri Lakshminarayana;Basavaraju, Suman;Sachdeva, Suresh K.;Juneja, Suruchi
    • Imaging Science in Dentistry
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2014
  • Purpose: The present study was aimed to investigate the variation of soft palate morphology in different age and gender groups. The correlations of radiographic velar length (VL), velar width (VW), pharyngeal depth (PD), and Need's ratio with soft palate variants were also studied in the North Indian subpopulation. Materials and Methods: The study sample consisted of 300 subjects aged between 15 and 45 (mean: 31.32) years. The velar morphology on lateral cephalograms was examined and grouped into six types. The results obtained were subjected to a statistical analysis to find the correlation between variants of the soft palate with gender and different age groups. Results: The most frequent type of soft palate was leaf shaped (48.7%), and the least common was crook shaped (3.0%) among both the genders and various age groups, showing a significant correlation. The mean VL, VW, and PD values were significantly higher in males and significantly correlated with the types of soft palate. A significant correlation was observed between the mean VL, VW, PD, and Need's ratio with various age groups, showing an inconsistent pattern with an increase in age. The types of soft palate, gender, and Need's ratio were also significantly correlated, with an overall higher mean value of the Need's ratio among female subjects and the S-shaped soft palate. Conclusion: The knowledge of a varied spectrum of velar morphology and the variants of the soft palate help in a better understanding of the velopharyngeal closure and craniofacial anomalies.