• Title/Summary/Keyword: Digital Trace

Search Result 136, Processing Time 0.023 seconds

An Automated Technique for Detecting Axon Structure in Time-Lapse Neural Image Sequence (시간 경과 신경계 영상 시퀀스에서의 축삭돌기 추출 기법)

  • Kim, Nak Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • The purpose of the neural image analysis is to trace the velocities and the directions of moving mitochondria migrating through axons. This paper proposes an automated technique for detecting axon structure. Previously, the detection process has been carried out using a partially automated technique combined with some human intervention. In our algorithm, a consolidated image is built by taking the maximum intensity value on the all image frames at each pixel Axon detection is performed through vessel enhancement filtering followed by a peak detection procedure. In order to remove errors contained in ridge points, a filtering process is devised using a local reliability measure. Experiments have been performed using real neural image sequences and ground truth data extracted manually. It has been turned out that the proposed algorithm results in high detection rate and precision.

A Study on eye-tracking software design and development for e-sports viewing on the web (e 스포츠 웹 시청 연구를 위한 시선 분석도구 설계 및 개발)

  • Ko, Eunji;Choi, SunYoung
    • Journal of Korea Game Society
    • /
    • v.15 no.4
    • /
    • pp.121-132
    • /
    • 2015
  • This study suggests a design for an analytical software program and method for multitasking e-sports viewing through the web using an eye tracking device. To fulfill this task, we designed a Window of Interest (WOI) to measure and record visually on a screen wherever numerous multitasking activities occur. In addition, we developed an OBS (Opensource Broadcaster Software) plug-in that records and streams participant viewing behavior patterns in real time. The purpose of this study is as follows. First, unlike existing tools that limit web interface recording to still images, the developed tool can record dynamically via media such as videos. Second, when several windows are processed on a screen, the tool can accurately record the gaze positions of the participants. Lastly, the tool can enhance the objective validity of the data as it can be implemented in natural situations. Therefore, this study can trace natural viewing patterns and behavior as we do not create artificial experimental environments and stimuli.

A SPEC-T Viterbi decoder implementation with reduced-comparison operation (비교 연산을 개선한 SPEC-T 비터비 복호기의 구현)

  • Bang, Seung-Hwa;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-89
    • /
    • 2007
  • The Viterbi decoder, which employs the maximum likelihood decoding method, is a critical component in forward error correction for digital communication system. However, lowering power consumption on the Viterbi decoder is a difficult task since the number of paths calculated equals the number of distinctive states of the decoder and the Viterbi decoder utilizes trace-back method. In this paper, we propose a method which minimizes the number of operations performed on the comparator, deployed in the SPEC-T Viterbi decoder implementation. The proposed comparator was applied to the ACSU(Add-Compare-Select Unit) and MPMSU(Minimum Path Metric Search Unit) modules on the decoder. The proposed ACS scheme and MPMS scheme shows reduced power consumption by 10.7% and 11.5% each, compared to the conventional schemes. When compared to the SPEC-T schemes, the proposed ACS and MPMS schemes show 6% and 1.5% less power consumption. In both of the above experiments, the threshold value of 26 was applied.

Trends Analysis on Research Articles in the Journal of Korean Society for Information Management (『정보관리학회지』 연구의 동향분석)

  • Seo, Eun-Gyoung
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.4
    • /
    • pp.7-32
    • /
    • 2010
  • The aims of this study were to provide a global overview of research trends in information science and to trace its changes in the main research topics over time using trends analysis. The study examined the topics of research articles published in Journal of Korean Society for Information Management between 1984 and 2009. Rather than taking a single snapshot of a given point in time, this study attempted to present a series of such pictures in order to identify trends over time. The fairly arbitrary decision was taken to divide the period under consideration into three 'publication windows': 1984-1994, 1995-2002, 2003-2009. The study revealed that the most productive areas were 'Information Service', followed by 'Information Organization', and 'Information System'. The most productive sub-areas were 'Library Service', 'User Study', 'Automatic Document Analysis', 'ILS', 'Thesaurus/Ontology', and 'Digital Library'. From the comparisons of intellectual structures of title keywords, the key research area in the field of Information Science was 'Information Retrieval'. The studies of IT applications and service system evaluation have been expanded.

Blind Decision Feedback Equalizer with a Modified Trellis Decoder for ATSC DTV Receivers (ATSC DTV 수신기를 위해 변형된 트렐리스 복호기를 사용하는 블라인드 판정 궤환 등화기)

  • 박성익;김형남;김승원;이수인
    • Journal of Broadcast Engineering
    • /
    • v.8 no.4
    • /
    • pp.481-491
    • /
    • 2003
  • We present a near-optimal blind decision feedback equalizer (DFE) for Advanced Television Systems Committee digital television (DTV) receivers. By adopting a modified trellis decoder (MTD) with trace back depth of 1 for the decision device In the DFE, we obtain a hardware-efficient near-optimal blind DFE approaching to the optimal DFE which has no error propagation. The MTD uses absolute distance instead of Euclidean distance for computation of a path metric, resulting. In reduced computational complexity. Comparing to the conventional slicer, the MTD shows outstanding performance improvement of decision error probability and is comparable to the original trellis decoder using Euclidean distance. Reducing error propagation in the DFE leads to the improvement of convergence performance in terms of convergence speed and residual error. Simulation results show that the proposed blind DFE performs much better than the blind DFE with the slicer.

Analysis of the Possibility of Recovering Deleted Flight Records by DJI Drone Model (DJI 드론 모델별 삭제 비행기록 복구 가능성 분석)

  • YeoHoon Yoon;Joobeom Yun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.609-619
    • /
    • 2023
  • Recently, crimes using drones, one of the IoT industries have been continuously reported. In particular, drones are characterized by easy access and free movement, so they are used for various crimes such as transporting explosives, transporting drugs, and illegal recording. In order to analyze and investigate these criminal acts, drone forensic research is highly emphasized. Media data, PII, and flight records are digital forensic artifacts that can be acquired from drones, in particluar flight records are important artifacts since they can be used to trace drone activities. Therefore, in this paper, the characteristics of the deleted flight record files of DJI drones are presented and verified using the Phantom3, Phantom4 andMini2 models, two drones with differences in characteristics. Additionally, the recovery level is analyzed using the flight record file characteristics, and lastly, drones with the capacity to recover flight records for each drone model and drone models without it are classified.

Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded real-time applications

  • Ivan Rene Morales;Maria Liz Crespo;Mladen Bogovac;Andres Cicuttin;Kalliopi Kanaki;Sergio Carrato
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.745-752
    • /
    • 2024
  • A method for gamma/neutron event classification based on frequency-domain analysis for mixed radiation environments is proposed. In contrast to the traditional charge comparison method for pulse-shape discrimination, which requires baseline removal and pulse alignment, our method does not need any preprocessing of the digitized data, apart from removing saturated traces in sporadic pile-up scenarios. It also features the identification of neutron events in the detector's full energy range with a single device, from thermal neutrons to fast neutrons, including low-energy pulses, and still provides a superior figure-of-merit for classification. The proposed frequency-domain analysis consists of computing the fast Fourier transform of a triggered trace and integrating it through a simplified version of the transform magnitude components that distinguish the neutron features from those of the gamma photons. Owing to this simplification, the proposed method may be easily ported to a real-time embedded deployment based on Field-Programmable Gate Arrays or Digital Signal Processors. We target an off-the-shelf detector based on a small CLYC (Cs2LiYCl6:Ce) crystal coupled to a silicon photomultiplier with an integrated bias and preamplifier, aiming at lightweight embedded mixed radiation monitors and dosimeter applications.

Distributed Social Medical IoT for Monitoring Healthcare and Future Pandemics in Smart Cities

  • Mansoor Alghamdi;Sami Mnasri;Malek Alrashidi;Wajih Abdallah;Thierry Val
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.135-155
    • /
    • 2024
  • Urban public health monitoring in smart cities focuses on the control of conditions and health challenges in urban environments. Considering the rapid spread of diseases and pandemics, it is important for health authorities to trace people carrying the virus. In smart cities, this tracing must be interoperable and intelligent, especially in indoor surfaces characterized by small distances between people. Therefore, to fight pandemics, it is necessary to start with the already-existing digital equipment of the Internet of Things, such as connected objects and smartphones. In this study, the developed system is employed to provide a social IoT network and suggest a strategy which allows reliable traceability without threatening the privacy of users. This IoT-based system allows respecting the social distance between persons sharing public services in smart cities without applying smartphone applications or severe confinement. It also permits a return to normal life in case of viral pandemic and ensures the much-desired balance between economy and health. The present study analyses previous proposed social distance systems then, unlike these studies, suggests an intelligent and distributed IoT based strategy for positioning students. Two scenarios of static and dynamic optimization-based placement of Bluetooth Low Energy devices are proposed and an experimental study shows the contribution and complementarity of the introduced contact tracing strategy with the applications on smartphones.

The viterbi decoder implementation with efficient structure for real-time Coded Orthogonal Frequency Division Multiplexing (실시간 COFDM시스템을 위한 효율적인 구조를 갖는 비터비 디코더 설계)

  • Hwang Jong-Hee;Lee Seung-Yerl;Kim Dong-Sun;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.61-74
    • /
    • 2005
  • Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF